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1. Executive Summary 
Forestry soil disturbance assessments are generally carried out using ground-based methods such as 

plots and line transects, these methods are labour intensive and time consuming. With the increasing 

availability of higher resolution daily satellite imagery and improving image classification tools, there 

is the opportunity to use these resources to change the way site disturbance is measured. 

Seven harvest sites in the South-Island of New Zealand were used to assess the accuracy of using 

satellite images and supervised image classification to identify soil disturbance of forestry sites. Three 

of the sites were around Nelson and the other four were around Christchurch. Ground truthing was 

carried out at each site, which involved creating two lines of 15 points each where the points were 

spaced at 10 meter intervals. The location of each point was recorded using a Trimble Geo7X handheld 

together with a Trimble Zephyr 3 GPS receiver, which provided an accuracy of 10-15 cm. At each point, 

the major land cover type was determined by visual inspection to be either bare soil or not bare soil 

(e.g. slash or vegetation). This data was recorded to later be compared against the classified image. 

Satellite images were obtained through the PLANETSCOPE constellation with a 3m by 3m resolution, 

the images used were ideally taken closest to the date the ground-truthing data was collected for each 

site as well as being the clearest image with minimal shading and/or cloud cover. The images were 

uploaded into ArcMap Desktop 10.7.1 and processed using two supervised classification tools, 

Maximum Likelihood Equation (MLE) and Support Machine Vector (SVM). Once the images were 

classified the ground-truth points were uploaded and projected over the classified images. This 

allowed for each ground-truth point to be compared to the individual pixel it represented and for an 

accuracy assessment to be carried out for each site. 

The accuracy assessment allowed for comparison between classification methods and techniques 

used within the classifications. The average overall agreement for MLE and SVM was 64% and 65% 

respectively, while the Kappa coefficient was 0.19 and 0.18, respectively. However, when looking at 

the best-case scenarios for each classification technique the average overall agreement for MLE and 

SVM was 68% and 72% respectively, while the Kappa coefficient was 0.23 and 0.27, respectively. 

Confirming that the SVM classifier generally outperforms the MLE classifier. 

When using the SVM classifier it generally returned a higher User’s accuracy compared to the MLE 

classifier, however, the MLE classifier provides a higher Producer’s accuracy. This means that the maps 

created using the SVM classifier are more accurate from the map users’ point of view. The supervised 

classification techniques were able to easily identify large disturbances such as roads and skid sites 

but struggled to pick up smaller disturbances due to the effects of ‘mixed’ pixel, where the pixels 

contain more than a single class. 

When assessing the accuracy of the classification, ideally ground-truth data would be collected with a 

random scatter over the entire site, which would help provide a more significant accuracy assessment. 

As higher resolution imagery becomes more readily available from both daily satellite images or 

drones and fixed wing aircrafts, there is the opportunity to increase the accuracy of the classifications. 
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2. Introduction 
The plantation forest industry covers approximately 1.69 million hectares, or 7% of New Zealand’s 

total land area (Ministry for Primary Industries, 2019). For most of a plantation forest’s life the land is 

covered with trees and it is well known that vegetation, and in particular trees, improve slope stability 

and reduce erosion (Norris eat al., 2008). Tree roots reinforce soil making it stronger, and the tree 

canopy tends to make the soil drier (through hydrological processes of interception and transpiration), 

which also increases soil strength (Phillips et al., 2015). However, there is a time when this land cover 

is dramatically changed from the harvesting of the trees. Clear-fell harvesting effectively eliminates 

evapo-transpiration, often resulting in saturated soils and increased subsurface water flow, thus 

increasing the risk of slip erosion (Elliot et al. 1999). The loss of canopy cover exposes the soil to direct 

rainfall impact, increasing the amount of fluvial erosion. Post-harvest is when the land is most 

vulnerable to erosion and debris flows, which can have a range of negative impacts onsite and offsite.  

Exposed soil from forestry practices such as earth works, harvesting, and mechanical land preparation 

have the potential to create sediment issues that do not meet the regulations outlined under the 

National Environmental Standards for Plantation Forestry (NES-PF). The NES-PF states that sediment 

originating from earthworks, harvesting, and mechanical land preparation must be managed to ensure 

that after reasonable mixing it does not give rise to any of the following effects on receiving waters: 

a) any conspicuous change in colour or visual clarity; b) the rendering of fresh water unsuitable for 

consumption by farm animals; c) any significant adverse effect on aquatic life (Resource Management 

(National Environmental Standards for Plantation Forestry) Regulations, 2018).  

The amount and type of land cover is an important characteristic to measure when collecting soil 

disturbance data post-harvest. Land cover data can be used for tracking invasive species, plant growth, 

woody debris loadings, and the risk of surface water runoff and soil erosion (Kvamme, 2010). Creating 

land cover maps makes it easy to measure and compare factors across different study sites, for 

example, comparing different management practices such as erosion control measures and how the 

different practices can impact each site.  

Determining land cover of forestry sites has historically been carried out using ground-based methods 

such line intersects and plots, of which both methods are labour intensive and time consuming. These 

methods are still used today as they are tried and tested methods that are well known and provide 

consistent results. Advancements in technology have led to cheaper and more effective methods for 

collecting imagery, it has become a tool that is used daily by many industries, images of large areas 

can be taken from satellites and fixed wing aircrafts. Imagery processing software has also advanced 

and is used all around the world, software is readily available through the internet with a range of 

different processing tools.   

This project will look at classifying the land cover of forestry sites post-harvest using satellite imagery. 

The images will be classified using the Maximum Likelihood classification and Support Machine Vector 

classification on ArcMap 10.7.1. Accuracy assessments of the classifications will be carried out using 

ground truth points from the harvest sites and comparing the ground-truth data to the classified 

images. The report will provide a critical review of the literature related to this project, identifying 

gaps in knowledge that can be filled. It will then provide a clear problem statement and objective of 

this project, provide a detailed methodology section on how the analysis will be carried out, a results 

and data analysis section, and a discussion and conclusion on the results obtained throughout the 

study. 
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3. Literature review  

3.1 Erosion and soil disturbance 
The current preferred harvesting practice in New Zealand is larger scale clear-cutting, based on 

logistical and economic benefits (Visser et al., 2018). The loss of the tree canopy results in a higher 

erosion risk due to more rainfall reaching the soil, less litter covering the soil surface, and the loss of 

root stabilisation. 

There are two main types of erosion that occur within forestry operations, they are fluvial erosion and 

mass movement erosion (Satchell, 2018). Fluvial erosion is surface erosion caused by water scouring, 

it can be broken into the following categories. Sheet erosion, which is the removal of the thin layer of 

surface soil. Sheet erosion can become Rill erosion by scouring out small channels that are less than 

60 cm deep and 30 cm wide. This Rill erosion can then become Gully erosion and Tunnel-gully erosion. 

Gully erosion is like Rill erosion except they are just channels larger than 60cm deep and 30cm wide. 

Tunnel-gully erosion forms tunnels under the ground surface that then collapse and become gullies. 

Mass movement erosion is gravitational driven movement of soil mass downhill such as landslides and 

debris flows. They are generally a result of improper placement of slash or cutting of slopes for roads, 

which cause an increase in the stress placed on soil. The likelihood of mass movement erosion 

occurring is increased with heavy rainfall events that saturate the soil decreasing its strength. 

Sheet erosion can be reduced with slash cover which stops the displacement of soil by rain drops. The 

smaller slash, such as needles and small branches, also provide nutrient recycling to the soil. However, 

larger slash, such as large branches and stem wood, can cause significant damage if they are not 

properly managed and become mobilised during a storm event. 

Harvesting soil disturbances are caused by wheeled and tracked harvesting machinery, earthworks, 

and dragging logs across slopes (Satchell, 2018). Harvesting systems that create higher levels of soil 

disturbance produce higher levels of surface erosion. This surface erosion transports sediment 

downhill that either gets trapped by slash or enters waterways. Although the amount of sediment 

entering waterways from surface erosion is not as substantial when compared to mass movement, it 

occurs more often and can be brought on from smaller rainfall events than ones that trigger mass 

movement.  

There are several rules under the NES-PF that regulate sediment entering waterways during different 

processes while harvesting. These rules are in place due to negative effects caused by increased 

sediment in waterways, such as conspicuous change in colour, rendering fresh water unsuitable for 

consumption by farm animals, and impacting aquatic life (Resource Management (National 

Environmental Standards for Plantation Forestry) Regulations, 2018). If overall soil disturbance can be 

reduced, so can the amount of sediment entering waterways.  

A study carried out by Petherick (2014), looked at the amount of long-term unproductive land as a 

proportion of the total harvest area for forestry operations in the South Island of New Zealand. This 

unproductive area was classed as landings and permanent forestry roads (roads used for accessing 

skids, not skid trails). This was done for harvest sites with at least eight skid sites. Petherick found an 

average unproductive area of 4.82% of the total harvest area. He found this unproductive area using 

satellite images and ArcGIS to measure the area of the skids and lengths of roads within the harvest 

area, the roads’ lengths were then multiplied by a width depending on the type of road to get a total 

sum of unproductive area for skids and roads. 
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A typical soil disturbance survey is completed using two sampling methods, Grid Point-Intercept (GPI) 

and the Traverse method (Curran et al., 1991). The GPI method places an evenly spaced grid over the 

site where a two transects are sampled at each grid point to assess disturbance from skid roads and 

random skid trails. The Traverse method is used for measuring infrequent types of disturbance such 

as skids, fire guards, and haul roads. 

A study carried out by McMahon (1995), looked at the accuracy of two ground survey methods for 

assessing site disturbance. McMahon outlined three ground survey methods, which have been used 

by researchers to assess site disturbance to be Point Transect (PT) method, Line Transect (LT) method, 

and Grid Point Intercept (GPI) method. He also mentioned a study carried out by Firth et al. (1984) 

where aerial photographs combined with ground reconnaissance were used to assess site disturbance. 

The study found this method had several advantages over the ground-based methods, such as rapidly 

assessing large areas for deep disturbance. However, identifying less severe disturbance and 

disturbance without a distinct colour difference were difficult to identify and required more ground 

surveying to be identified. 

3.2 Satellite imagery 
Satellite imagery is a readily available resource with around 95% of New Zealand being mapped and 

accessible through Land Information New Zealand (Land Information New Zealand, 2020). Another 

platform that provides free satellite imagery is Google Earth (Google Earth, 2020). If desired, more 

detailed imagery can be carried out using the desired imagery option such as drones, fixed wing 

aircrafts or satellites to help provide more current and/or higher resolution images. These images have 

many uses, such as determining land cover of an area, looking at land use change over time or 

providing weather information.  

Planet.com uses three different satellite constellations, PLANETSCOPE, RAPIDEYE, and SKYSAT. The 

constellation used to take the images for this study will be the PLANETSCOPE constellation, they have 

a pixel size of 3 by 3 meters. The multispectral sensors aboard the satellites collect information from 

different wavelengths like a digital camera, however, there are two main differences. Firstly, instead 

of limiting itself to visible wavelengths it detects a much broader range of wavelengths not visible to 

the human eye, such as infrared and sometimes thermal. Secondly, instead of automatically 

combining the information from each wavelength to create a picture, information for each specific 

wavelength range is stored as a separate image, this is commonly called a ‘band’ (Horning, 2004).  The 

PLANETSCOPE has four bands which include Red Blue and Green (RGB), and a near infrared band (NIR). 

These bands when viewed alone are like a black and white photograph, it is up to the user to combine 

the images from different wavelengths to create the desired colour image. The combination of bands 

can be done to highlight certain features within an image such as vegetation, water, or soil. The 

following list provides information on the first four bands and was retrieved from (Horning, 2004). It 

provides a generalised wavelength range and common uses for each band. 

Band 1 (0.45-0.52 µm, blue-green): Since this short wavelength of light penetrates better than the 

other bands it is often the band of choice for aquatic ecosystems. It is used to monitor sediment in 

water, mapping coral reefs, and water depth. Unfortunately, this is the noisiest of the Landsat bands 

since short wavelength blue light is scattered more than the other bands. For this reason, it is rarely 

used for "pretty picture" type images.  

Band 2 (0.52-0.60 µm, green): This has similar qualities to band 1 but not as extreme. The band was 

selected because it matches the wavelength for the green we see when looking at vegetation.  
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Band 3 (0.63-0.69 µm, red): Since vegetation absorbs nearly all red light (it is sometimes called the 

chlorophyll absorption band) this band can be useful for distinguishing between vegetation and soil 

and in monitoring vegetation health.  

Band 4 (0.76-0.90 µm, near infrared): Since water absorbs nearly all light at this wavelength, water 

bodies appear very dark. This contrasts with bright reflectance for soil and vegetation, so it is a good 

band for defining the water/land interface. 

3.3 Image processing 
Images can be processed using a range of tools available through different programs. Image 

classification is a very useful tool for determining the land cover of large areas. Three of the main types 

of image classification are supervised, unsupervised and object-based image analysis (OBIA). 

Supervised classification uses training samples to classify the image while the unsupervised 

classification finds spectral classes without the analyst’s intervention. OBIA groups pixels into 

representative shapes with size and geometry. When using low spatial resolution all three techniques 

work well, but when you have high spatial resolution, OBIA is superior to traditional pixel based 

classification (GISGeography, 2014). For the low spatial resolution, supervised classification 

outperforms unsupervised. 

Traditional remote sensing data classification methods include Maximum Likelihood Estimation 

classifier, distance measure, clustering, or logistic regression (Rana et al., 2020). Maximum Likelihood 

Estimation (MLE) is one of the most popular supervised classification methods used with remote 

sensing image data (Mustapha, 2010). When using this tool through ArcMap 10.7.1 it uses an 

algorithm that is based on two principles, 1) The cells in each sample in the multidimensional space 

being normally distributed and 2) Bayes theorem of decision making (ESRI, 2019a).  

Cells in a class are rarely homogeneous. For example, if irrigated land in the shade has a reflectance 

that is similar to non-irrigated land in the sun they could end up in the same class. To classify pixels 

that fall within the overlap of the two classes, the MLE classifier calculates the probability of the cell 

belonging to each class then it is assigned to the class with the higher probability, resulting in the term 

"maximum likelihood" (ESRI, 2019c). 

Over the last decade, more advanced methods, such as decision trees, k-nearest-neighbours, random 

forest, neural networks and Support Vector Machine (SVM) have been used for Land Use and Land 

Cover (LULC) mapping (Runa et al., 2020). A recent study carried out in 2016 by Khatami et al., 

compared state of the art supervised classification methods for land cover classifications. It was found 

that the more recent and advanced classifiers, such as SVM, k-nearest-neighbours, and random forest 

tree generally provide better results than the traditional classifiers, with SVM being the most efficient 

method (Khatami et al., 2016) 

SVM and Random Forest Tree classifiers are recent developments in the computational aspects of 

image classification. Their ability to minimize classification errors make them superior to the 

parametric classifiers such as MLE classifier. The basic approach in SVM is to identify a hyper-plane 

that produces an optimal separation between the two classes (Runa et al., 2020). This classifier does 

not assume that the cells in each class are normally distributed. 

A major limitation when using supervised classification techniques for mapping land cover is that they 

are designed to create mutually exclusive classes, with each pixel being pure and only comprising of a 

single class. This is most often not the case, pixels containing mixed land cover are usually abundant, 

particularly near imprecise and fuzzy boundaries. These mixed pixels are a major problem for 
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supervised classification as the output is “hard”, containing only the allocated class, therefore, these 

techniques cannot represent mixed pixels limiting the accuracy of the classification (Foody, 1996). 

Assessing the accuracy of a classification is an essential step after performing a land cover classification 

to assess the errors of the map and its reliability. There are many methods for assessing the accuracy 

of a classification, the most widely prompted and used, however, may be derived from a confusion 

matrix, it is currently at the core of accuracy assessment literature (Foody, 2001).  

One of the most common methods for assessing the accuracy of the classified image is to create a set 

of random points over the study area to collect ground-truth data from and compare the results using 

a confusion matrix. This allows for comparison between the classified image and another data source 

that is considered to be accurate or ground truth data (ESRI, 2019e). Ground-truth data can be either 

collected out in the field, however, this is time consuming and expensive, or it can be derived from 

interpreting existing classified imagery or high-resolution imagery and GIS data layers.  
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4. Problem statement and Objective 
Forestry soil disturbance assessments are generally carried out using ground-based methods, such as 

plots and line transects. These methods are both labour intensive and time consuming. With the 

increasing availability of daily satellite imagery and improving image classification tools, there is the 

opportunity to use these resources to change the way site disturbance is measured.  

 Determine if satellite imagery and supervised image classification can be used to accurately 

identify bare soil on harvested forestry sites. 

 

5. Methodology 

5.1 Site locations 
A total of seven sites were analysed throughout this study. Three sites were from the Golden Downs 

area near Nelson and are managed by Onefortyone. The three locations can be seen below in Figure 

1. These sites ranged in size from 71 ha to 330 ha and had all been recently harvested with some areas 

that had undergone mechanical site preparation.  

 

 

 

 

Figure 1: Location of harvest sites near Nelson. 
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Four sites with proximity to Christchurch city were used, which are managed by Laurie Forestry. The 

locations of these four sites near Christchurch can be seen below in Figure 2. These four sites range in 

size from 2 ha to 10 ha and have all been mechanically prepped and recently planted.  

 

Satellite images of each harvest site were taken by the PLANETSCOPE constellation, the images of the 

Nelson harvest areas were provided by OneFortyOne and the areas around Christchurch were 

accessed through a Planet.com Education & Research basic account, which allowed access to daily 

imagery of the harvest sites. Each harvest area was given a corresponding number to keep track of 

each site during analysis. The satellite images for each site were uploaded into ArcMap 10.7.1 Desktop 

software and projected using the WGS84 coordinate system, this corrects any errors associated with 

different projections to help improve accuracy between sites, and is the same coordinated system 

used when carrying out ground truthing.  

Figure 3 shows an original satellite image of a harvest area taken from the PLANETSCOPE constellation. 

Using the polygon tool on ArcMap, the harvest boundary is outlined in red as seen in Figure 4. This 

allows for the pixels within the harvest boundary to be processed instead of processing the entire 

image, this is done using the ‘clip’ tool on ArcMap which uses the previously created polygon (harvest 

boundary) to extract all the pixels within the polygon and create a new image of the harvested area 

of interest. 

Figure 2: Location of four harvest sites around Christchurch. 
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5.2 Ground-truth data 
An onsite analysis was carried out for each harvest site to create ground-truth plots. Due to time 

constraints and the large geographical area of some of the sites, random plots covering the entire site 

were not a feasible option, instead at each site two separate lines of 15 points were created with 10 

metre spacings between points. At each point, the location was recorded using a Trimble Geo7X 

Handheld together with a Trimble Zephyr 3 GPS receiver, the system was held steady and level at each 

location for at least 60 seconds which provided an accuracy of 10-15 centimetres. 

At each point, a visual inspection was carried out to determine if the major landcover type was bare 

soil or not bare soil (e.g. slash or vegetation) for a 3 metre radius around the point, this was recorded 

along with each point number. If the landcover was determined to be slash, this was then further 

broken down into 5 sub classes using a 1 – 5 scale, 1 being light slash cover and 5 being heavy slash 

cover. To supplement the visual inspection and for later analyses, a photo was taken at each point of 

the land cover with the point number and observed land cover type. Figure 5 provides an example for 

some of the possible land cover types, it shows a light and heavy slash example (1 and 5 on the scale 

range respectively), as well as a bare soil and a vegetation example. The light slash, heavy slash, and 

vegetation are all classified as ‘Slash’ while the bare soil is the only one classified as ‘Bare soil’.  

 

 

 

 

 

 

 

 

 

Figure 3: Original satellite image of harvest 
area. 

Figure 4: Outline of harvest area. 

Light Slash 

Example 

Heavy Slash 

Example 

Bare Soil Example Vegetation 

Example Figure 5: Example of some landcover types. 
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Once all the ground truth data was collected it was 

later transferred into an Excel file where each point 

was given a value of either ‘S’ for slash or ‘B’ for bare 

soil, if it was slash it also had an associated column 

with a number for the amount of slash cover using 

the 1-5 scale mentioned above. 

The ground-truth plots were differentially corrected 

using the known location of a base station, and 

individually correcting each point at the same time 

that point was created, the points were then 

uploaded into ArcMap and projected using the same 

WSG84 coordinate system as the original satellite 

images. Figure 6 provides an example of a harvest 

site with the ground-truth points overlaid, the 

ground-truth plots are the yellow dots that can be 

seen on the lower and upper, right-hand side of the 

harvest area. 

 

5.3 Analysing satellite images 
The images taken by the PLANTESCOPE constellation are made up of four spectral bands, which 

represent different wavelengths and can be arranged to suit the individual study as outlined in the 

literature review. For this study, the near infrared band is used along with the 2nd and 3rd band. This 

step is carried out by opening up the properties of the ‘clipped’ image going to the symbology tab and 

assigning the Red Green and Blue colours to the desired bands, in this case the near infrared (NIR) or 

4th band was assigned to Red, the 2nd band was assigned to Green, and the 3rd band was assigned to 

Blue. Figure 7 shows the rearranged bands of the harvest site which produce a near infrared image. 

The light to dark red areas seen in Figure 7 are slash and standing vegetation, while the light blue and 

white areas are bare soil.  

From here, the colours of the image can then be inverted to provide a more distinguishable contrast 

between the two classes, this is also done under the symbology tab by checking the ‘invert’ box. Figure 

8 shows how this changes the colours compared to the infrared image in Figure 7. Shown in Figure 8, 

the dark brown areas are bare soil and the white to blue areas are slash & vegetation. It should be 

noted that the shaded areas of the harvest site as seen in the left corner of the harvest area appear 

dark in Figure 7 and bright in Figure 8, these dark areas are the shaded parts of the harvest site. 

Distinguishing between the two classes is difficult in these shaded areas as only large areas of bare 

soil are visible, otherwise the areas have a reflectance similar to slash. 

 

Figure 6: Ground-truth plots over satellite image. 
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5.4 Creating and evaluating training samples 
Selecting appropriate training samples is the most important step in the image classification process 

as they are used to train the software. Using the image in Figure 8, training samples can be created 

for the two classes either bare soil or slash & vegetation. This is done by zooming into sections of the 

image where each class can be easily identified. An example of a training sample for bare soil and for 

slash can be seen in Figure 9 and 10, respectively. The sample in Figure 9 is part of a skid site and 

contains pixels of pure bare soil, a road is visible on the right-hand side of Figure 10 which could also 

be used as a bare soil training sample. The sample in Figure 10 includes areas of both vegetation and 

slash, the darker blue areas are vegetation and the light blue and white areas are slash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7: Rearranged bands of harvest 
area. 

Figure 8: Inverted bands of harvest area. 

Figure 9: Training sample of bare soil. Figure 10: Training sample of slash and 
vegetation. 
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Training samples can be created using a range of different shapes or custom polygons, in these 

examples I have used a square to identify areas of bare soil or not bare soil, the training sample 

collection process is a matter of manual interpretation between the two classes where the location 

and size of the training sample comes down to the analyst’s interpretation. When selecting training 

samples, they should be evenly spread over the site, aiming to cover the entire spectral range and 

variability for each class. Training samples should not include pixels where the ground-truthing was 

carried out as these points are later used to assess the accuracy of the classification tool.  

 

Once the required number of training samples have been created, they can be evaluated to ensure 

they will provide an accurate classification. This is done by displaying Histograms, Scatter plots, and 

the Statistics for the band ranges within the group of training samples. Each should be examined so 

that there is minimal to no overlap between the two classes. If there is overlap, this means some 

training samples need to be removed or redone to minimise the overlap. This is an iterative process 

and should be repeated until the user is happy with the training sample set. An example of the 

Histograms, Scatter plots, and Statistics can be seen in Figure 11, 12 and 13, respectively. 

 

 

Figure 11 shows Histograms with the spectral range for each class and the associated count of 

individual pixels over that range, where red represents the bare soil class and green represents the 

not bare soil class. Figure 12 shows the relationship between the individual bands and makes it easy 

to identify areas of overlapping between the two classes. Figure 13 provides a table of statistics for all 

Figure 11: Histograms showing band range for soil and slash. 
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bands within both classes, this also makes it easy to find overlapping classes by looking at the 

minimum and maximum values for each band between the two classes. Some of the training samples 

used in this example had to be redone to minimise the overlap present in the three figures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Scatter plots showing band range for soil and slash. 
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Once a good set of training samples is attained, they can be saved as a signature file. This signature 

file can then be used to create both a Support Vector Machine classifier file and a Maximum Likelihood 

Estimation classifier file, these files can be used to create the final classification for that set of training 

samples. 

 

5.5 Training sample sensitivity analysis  
A sensitivity analysis was carried out on training sample size, this was done by repeating the above 

steps for training samples for each class, the number of samples was increased in intervals of 5 for 

each class, ranging from 5 training samples per class to 20 training samples per class. Each varying set 

of training samples were evaluated using the Histograms, Scatter plots, and Statistics as seen above 

to ensure they were as accurate as possible. The following figure provides an example of the varying 

training sample sets and how they were spread out over the site to capture the entire spectral range 

and variability of each class. The left image in Figure 14 represents 5 training sample per class, while 

the right image represents 20 training sample per class. 

 

 

Figure 13: Statistics for band ranges of soil and slash. 
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Figure 15 and 16 show the results for a classified image using the 5 and 20 training samples per class, 

that were shown above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once all the images have been classified, the ground truth points can be used to assess the accuracy 

of the classification. Figure 17 provides a close up of the ground-truth plots over a classified image, 

from here each pixel that has a ground-truth value associated with it can be assessed to determine if 

it has been correctly classified according to the ground-truth results. This is done by adding a column 

Figure 15: Classified image using 5 training samples 
per class. 

Figure 16: Classified image using 20 training samples 
per class. 

Figure 14: Comparison of training sample sets. 



19 
 

for each training sample size to the Excel file which states the classified value of each pixel using the 

same code as the one used for the ground truth values, ‘S’ for slash and ‘B’ for bare soil.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

For each site, an Excel spread sheet was created that contained the following columns seen in Figure 

18. The first column contains the point number, the second is the ground truth value associated with 

that point either ‘S’ or ‘B’, and the slash cover value associated with that plot (1 – 5) if it was classed 

as slash. The rest contain the classified values for each pixel associated which each plot again being 

either ‘S’ or ‘B’. This example shows the values for the SVM classification, hence, the SVM and the 

number represents the number of training samples used for each class. Another table was created 

similar to this for each site except for the MLE. 

After all the columns are filled out with the ground-truth and classified data, a confusion matrix can 

be computed for each training sample set. This is done by comparing the ground-truth values to those 

in the varying training sample columns to determine how many agreed and how many disagreed. The 

main inputs into the confusion matrix are the numbers highlighted in grey in Table 1. The number 5 

for slash under the ground-truth column represents the number of slash pixels that were correctly 

classified as slash, while the 1 represents slash pixels that were incorrectly classified as bare soil. The 

6 under bare soil in the ground-truth column represents bare soil pixels that were incorrectly classified 

as slash, while the 18 represents bare soil pixels that were correctly classified as bare soil. 

Figure 17: Close up of ground-truth points 

Figure 18: Spread sheet example 

Plot Ground-truth Slash Cover (1-5) SVM 5 samp SVM 10 samp SVM 15 samp SVM 20 samp
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A confusion matrix was computed for each site, training sample size, and classification method to help 

analyses the results. Each matrix includes errors of omission and commission, overall accuracy and 

derives a Kappa index of agreement between the classified image and the ground truth data. 

The errors of commission, known as the User’s accuracy or type 1 error, are false positives where 

pixels are incorrectly classified as a known class when they should be classified as something else. For 

example, the classified image identifies the pixel as bare soil when the ground truth identifies it as 

slash. For this case, the bare soil class has extra pixels than it should according to the ground truth 

data. 

The errors of omission known as the Producer’s accuracy, or type 2 error, are false negatives where 

pixels of a known class are classified as something else. For example, the classified image identifies a 

pixel as slash, but it should be bare soil. And for this case the bare soil class is missing pixels according 

to the ground truth data.  

The overall accuracy of the classification is the total number of pixels that agree for all classes in the 

classification, using the matrix in Table 1, for example, 5 for slash and 18 for bare soil, these are the 

diagonal values of the matrix and can also be seen in the agreement row with a total of 23 pixels 

agreeing. This value is divided by the total number of pixels that are being examined (30), producing 

a total agreement of 77 % for this classification as seen in Table 1.  

The table also provides a Kappa index of agreement, which provides an overall assessment of the 

accuracy of the classification but takes into consideration the agreement due to chance and subtracts 

it from the overall agreement. In Table 1 Slash represents 6/30 = 20% of the ground-truth values and 

11/30 = 37% of the classified values. Thus 20% * 37% = 7.3% of the agreement between the classified 

and ground-truth values for Slash are by chance i.e. 7.3% * 30 = 2.2 of the pixels. Similarly, 15.2 of the 

bare soil pixels are by chance, which means the total number of pixels classified by chance is 17.4. 

Now subtracting out the agreement due to chance using equation (1) will give the final Kappa index 

of agreement of 0.44 (44%) as seen in Table 1.  Kappa values range from 0 – 1 where zero is no 

agreement and 1 is total agreement, sometimes a negative value is returned which also indicates no 

agreement. 

Table 1: Example of confusion matrix and Cohen's Kappa. 

SVM

Cohen's Kappa

Site 2: 5 Samples

Ground-truth

Classified Slash Bare Soil Total User's

Slash 5 6 11 0.45

Bare Soil 1 18 19 0.05

Total 6 24 30

Producer's 0.83 0.25 0.77

Agreement 5 18 23

By Chance 2.2 15.2 17.4

Kappa 0.44
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                                                               𝑘 =
𝑛𝑎−𝑛𝑒

𝑛−𝑛𝑒
                                                               (1) 

 

Where:  

k = Kappa Index 

n = Number of pixels 

na = Number of agreements 

ne = Number of agreements due to chance 

 

There is no universal agreement for a set of Kappa values and how significant the agreement is, 

therefore the following table provided by McHugh (2017) will be used in the study as it is similar to a 

range of other values provided in literature. 

 

 

6. Results and Data analysis 
Table 3 and 4 show the results for the overall agreement and the Kappa index for the varying sample 

size. Table 3 shows the results when using the MLE classifier, while Table 4 shows the results when 

using the SVM classifier. The numbers highlighted in yellow show the best results for each site, for 

each classifier, and at which training sample size it occurred. 

5 Samples 10 Samples 15 Samples 20 Samples

MLE Overall Kappa Overall Kappa Overall Kappa Overall Kappa

Christchurch Site 1 0.7 0.31 0.6 0.15 0.67 0.25 0.63 0.2

Site 2 0.67 0.31 0.57 0.25 0.57 0.2 0.63 0.27

Site 3 0.5 -0.06 0.53 0.05 0.5 0 0.53 0.05

Site 4 0.33 -0.01 0.57 -0.05 0.57 -0.15 0.57 -0.15

Nelson Site 1 0.53 0.09 0.53 0.09 0.5 0.03 0.53 0.1

Site 2 0.83 0.38 0.87 0.27 0.87 0.27 0.9 0.35

Site 3 0.83 0.44 0.83 0.51 0.77 0.44 0.77 0.44

Table 3: Overall accuracy and Kappa index for Maximum likelihood classification. 

Table 2: Ranges for Kappa agreement (McHugh, 2017). 
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From these two tables, it is clear that the SVM classifier provides a more accurate classification than 

the MLE classifier in terms of overall accuracy and Kappa index when looking at the best-case 

scenarios, except for site 3 in Nelson. It is also clear that the Christchurch sites are most accurate 

with a smaller training sample sets compared to the larger Nelson sites. 

Taking the average results for both overall agreement and Kappa index for all training sample sizes 

returns an overall agreement of 64% and Kappa index of 0.19 for the MLE classifier and an overall 

agreement of 65% and Kappa index of 0.18 for the SVM classifier. When taking the average Kappa 

index negative values were treated as zero as they mean no agreement and including the negative 

values throws off the average Kappa values. If we take the best-case scenarios from each site the MLE 

classifier returns an average overall agreement of 68% and an average Kappa index of 0.23, while the 

SVM classifier returns an average overall agreement of 72% and an average Kappa coefficient of 0.27. 

The following two tables provide the Producer’s and User’s accuracy for the varying training sample 

size for each site. Table 5 shows the User’s and Producer’s accuracy when using the MLE classifier, 

while Table 6 shows the User’s and Producer’s accuracy when using the SVM classifier. 

5 Samples 10 Samples 15 Samples 20 Samples

SVM Overall Kappa Overall Kappa Overall Kappa Overall Kappa

Christchurch Site 1 0.77 0.43 0.5 -0.03 0.67 0.25 0.57 0.11

Site 2 0.77 0.44 0.73 0.39 0.77 0.39 0.77 0.39

Site 3 0.57 0.18 0.6 0.23 0.57 0.2 0.53 0.15

Site 4 0.53 -0.3 0.57 -0.15 0.57 -0.15 0.57 -0.27

Nelson Site 1 0.57 0.18 0.53 0.06 0.37 -0.21 0.3 -0.34

Site 2 0.57 0.02 0.87 0.27 0.97 0.65 0.97 0.65

Site 3 0.73 -0.11 0.73 -0.11 0.77 0.1 0.63 -0.08

Table 4: Overall accuracy and Kappa index for Support Machine Vector classification. 

5 Samples 10 Samples 15 Samples 20 Samples

MLE Producer's User's Producer's User's Producer's User's Producer's User's

Christchurch Site 1 Slash 0.56 0.5 0.56 0.38 0.56 0.45 0.56 0.42

Disturbed 0.24 0.2 0.38 0.24 0.29 0.21 0.33 0.22

Site 2 Slash 0.83 0.36 1 0.32 0.83 0.29 0.83 0.33

Disturbed 0.38 0.06 0.54 0 0.5 0.08 0.42 0.07

Site 3 Slash 0.61 0.58 0.56 0.63 0.5 0.6 0.56 0.63

Disturbed 0.67 0.64 0.5 0.57 0.5 0.6 0.5 0.57

Site 4 Slash 0.57 0.19 0.29 0.2 0.14 0.13 0.14 0.13

Disturbed 0.74 0.33 0.35 0.25 0.3 0.27 0.3 0.27

Nelson Site 1 Slash 0.79 0.5 0.79 0.5 0.79 0.48 0.86 0.5

Disturbed 0.69 0.38 0.69 0.38 0.75 0.43 0.75 0.33

Site 2 Slash 0.82 1 0.89 0.96 0.89 0.96 0.93 0.96

Disturbed 0 0.71 0.5 0.75 0.5 0.75 0.5 0.67

Site 3 Slash 0.92 0.88 0.88 0.91 0.75 0.95 0.75 0.95

Disturbed 0.5 0.4 0.33 0.43 0.17 0.55 0.17 0.55

Table 5: Producer's and User's accuracy when using Maximum Likelihood classification. 
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In general, when comparing Table 5 and 6 above, the producer’s accuracy is generally higher when 

using MLE classifier, while the user’s accuracy is higher when using the SVM classifier. 

 

7. Discussion 
The study carried out in 2016 by Khatami et al. compared more recent supervised image classification 

methods to the more traditional supervised classification methods such as Maximum Likelihood. It 

was found that the more recent methods generally outperform the traditional methods with the 

Support Machine Vector classifier generally providing the best results. From Table 3 and 4 I have 

confirmed that Support Machine Vector classifier provides more accurate results compared to the 

Maximum Likelihood classifier when used on harvested forestry sites.  

The SVM classifier does not assume the cells within a class are normally distributed but the MLE 

classifier does. Looking at the histograms in Figure 11 the cells in the different classes are not always 

normally distributed. This is due to the ‘Slash’ class not only including slash but also vegetation, and 

the possibility of mixed pixels in both classes, this makes the SVM classifier more suited for classifying 

harvest sites. 

When assessing the accuracy of the classified images the method that is most widely prompted and 

used, may be derived from a confusion matrix, it is currently at the core of accuracy assessment 

literature (Foody, 2001). When collecting the ground-truth data to help populate the confusion matrix, 

the most common method is creating a set of random points over the study area and collecting ground 

truth data at these points (ESRI, 2019e). The method used in this study consisted of a total of 30 

ground-truth points, split in to two lines of 15 points. This method provided a much faster way to 

collect the ground-truth data, rather than covering the entire harvest area going to randomly 

scattered points. However, this method also has its limitations as it doesn’t include as many 

assessment points as a random scatter which would provide a truer assessment of the accuracy, it 

could also miss variability within the sites.  

5 Samples 10 Samples 15 Samples 20 Samples

SVM Producer's User's Producer's User's Producer's User's Producer's User's

Christchurch Site 1 Slash 0.56 0.63 0.44 0.29 0.56 0.45 0.56 0.38

Disturbed 0.14 0.18 0.48 0.31 0.29 0.21 0.43 0.25

Site 2 Slash 0.83 0.45 0.83 0.42 0.67 0.44 0.67 0.44

Disturbed 0.25 0.05 0.29 0.06 0.21 0.09 0.21 0.09

Site 3 Slash 0.44 0.73 0.5 0.75 0.39 0.78 0.33 0.75

Disturbed 0.25 0.53 0.25 0.5 0.17 0.52 0.17 0.55

Site 4 Slash 0 0 0.14 0.13 0.14 0.13 0 0

Disturbed 0.3 0.3 0.3 0.27 0.3 0.27 0.26 0.29

Nelson Site 1 Slash 1 0.52 0.5 0.5 0.71 0.4 0.64 0.36

Disturbed 0.81 0 0.44 0.44 0.94 0.8 1 1

Site 2 Slash 0.57 0.94 0.89 0.96 1 0.97 1 0.97

Disturbed 0.5 0.92 0.5 0.75 0.5 0 0.5 0

Site 3 Slash 0.92 0.79 0.92 0.79 0.92 0.81 0.75 0.78

Disturbed 1 1 1 1 0.83 0.67 0.83 0.86

Table 6: Producer's and User's accuracy when using Support Vector Machine classification. 
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When using the best classifications from each site for each classification method, the MLE and SVM 

return relatively high overall agreement results of 68% and 72% respectively, with the ground-truth 

data. However, when looking at the Kappa coefficient for both the classification methods they 

returned average results of 0.23 and 0.27, according to Table 2 both classifiers fall in the category of 

minimal agreement where only 4% - 15% of the data is considered to be reliable.  

For the larger Nelson sites as the number of training samples increase so did the accuracy of the 

classification, while the smaller sites around Christchurch have the best results when only using 5 or 

10 training samples. With the larger sites there is a higher chance that there will be more variability 

throughout the site which will require more training samples to accommodate for this variability when 

performing the classification. While the smaller sites required less samples to cover the variability 

throughout the site and including more training samples increases the chance of mixed pixels being 

included when training the classifier. 

The most accurate classification was Site 2 in Nelson and returned an overall accuracy of 97% and a 

Kappa coefficient of 0.65 which is only moderate agreement according to the Kappa values in Table 2 

but an almost perfect overall accuracy. This was achieved using the SVM classifier. The worst 

classification was Site 1 in Nelson with an overall accuracy of 30% and a Kappa index of -0.34 meaning 

there was no agreement according to Kappa index and poor overall accuracy, this was also attained 

using the SVM classifier. 

When comparing the Producer’s and User’s accuracy for each site the general trend is that the 

Producer’s accuracy is higher than the User’s. This means that map accuracy from the map producer’s 

point of view is greater than the accuracy from the map user’s point of view. For example looking at 

the best classification, Site 2 from Nelson using 15 training samples has a 100% producer’s accuracy 

for slash meaning 100% of the reference slash areas have been correctly identified as slash, but has a 

user’s accuracy of 97% meaning only 97% of the areas identified as slash in the classified image were 

actually slash. 

Also, if you look at the Producer’s and User’s accuracy between the two different classification 

methods, the Producer’s accuracy is higher when using the MLE classifier, however the User’s accuracy 

is higher when using the SVM classifier. This means that the maps created using the SVM classifier are 

more accurate from the map users’ point of view. 

Looking at the following two figures is it easy to identify the large deep disturbances such as roads, 

skid sites and large skid trails in the original satellite image in Figure 19. These features are easily 

picked up in the classification as they have the greatest contrast compared to the slash class and can 

be easily identified from the original images as seen in Figure 20. The areas with lighter disturbances 

proved difficult to identify. 
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Pixels that are being incorrectly classified are generally close to a transition zone between the two 

classes and/or they contain a bit of each class, these pixels are known as mixed pixels. For example, a 

pixel that contains slash but has been mixed with soil will be difficult to classify and may result in 

misclassification. These mixed pixels are a major problem for supervised classification as the output is 

“hard”, containing only the allocated class, therefore these techniques cannot represent mixed pixels 

limiting the accuracy of the classification (Foody, 1996). 

Another reason for misclassification of pixels and a major limitation for steeper sites is the effect 

caused by shaded areas as it changes the reflectance of bare soil making it appear as slash, this can be 

seen when comparing Figure 19 and 20 when looking at the shaded areas at the top of the site in 

Figure 19 and how these areas are being classified as slash in Figure 20, e.g. the large green areas. This 

effect can be minimised by finding imagery that was taken mid-day or when there is the least amount 

of shading on site as possible. The shading can have an impact not just on hill slopes but also slash 

piles, wind rows, and from other larger standing vegetation within or around the site.  

When an area was identified as slash, it had an associated slash cover value ranging from 1-5 where 1 

was light slash and 5 was heavy slash. The sale was put in place to determine if the level of slash had 

a direct impact on the pixel being correctly classified as slash, ground-truth values that were recorded 

as heavy slash were expected to almost certainly be classified as ‘Slash’ compared to light slash values. 

This was not the case and no trends were found between the slash value and the classified pixel. 

As higher resolution images become more readily available it will make classifications more accurate 

by decreasing the pixel size, it will increase the number of ‘pure’ pixels (pixels that contain only one 

class). To get a better gauge on the accuracy of the classifications ideally, a sample of random ground-

truth plots over each site would need to be carried out. 

 

  

Figure 19: An original satellite image of a harvest site. Figure 20: Classified satellite image using the SVM classifier. 
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8. Conclusion  
This study aimed to determine if satellite images could be used in conjunction with supervised image 

classification to accurately identify bare soil on harvested sites. A total of seven harvested sites were 

analysed, three of which were in Nelson, while the other four were around Christchurch. Ground-truth 

data was collected at each site where a total of 30 points were analysed, the 30 points were split into 

two lines of 15 points spaced at 10 metre intervals over the harvest site. At each point the geographical 

location was recorded along with the dominant land cover value, either bare soil or not bare soil (e.g. 

slash or vegetation). 

Satellite images were used that were taken as close to the date the ground-truthing was carried out 

while also taking into consideration the time of day the image was taken and the quality of the image. 

These images could then be classified using two supervised classification methods, either the MLE 

classifier or the SVM classifier. The classified images were compared to the ground-truth points using 

a confusion matrix. 

The average overall agreement for MLE and SVM was 64% and 65% respectively, while the Kappa 

index was 0.19 and 0.18, respectively. However, when looking at just the best-case scenarios for each 

classification technique the average overall agreement for MLE and SVM was 68% and 72% 

respectively, while the Kappa index was 0.23 and 0.27, respectively. Confirming that the SVM classifier 

generally outperforms the MLE classifier. Although the overall accuracy was high for both the average 

and best-case scenarios, the Kappa index for both cases returned values of low agreement. 

When looking at Producer’s and User’s accuracy for the two classifiers the SVM generally returned a 

higher user’s accuracy, while the MLE generally returned a higher producer’s accuracy meaning the 

SVM classified map would be more accurate from the users’ point of view. 

Both classification techniques easily pick up large disturbances such as skids sites and roads but 

struggle with smaller lighter disturbances where pixels contain some of both classes, for example, the 

pixel may be mainly disturbed but also contain some heavy slash, this is called a ‘mixed’ pixel and can 

be difficult to classify, reducing the accuracy of the classification. Another factor affecting the accuracy 

of the classifications is shaded areas, the shade changes the reflectance of the ground resulting in the 

misclassification of pixels. 

As higher resolution images become more readily available it will make classifications more accurate 

by decreasing the pixel size, it will increase the number of ‘pure’ pixels (pixels that contain only one 

class) and reduce the area of mixed pixels at the boundaries between classes.  

Overall, the two classification methods both have relatively high overall agreement with the ground-

truth data, however, they both have low Kappa coefficients values that fall into the range of minimal 

agreement between the classification and ground-truth data. To get a better gauge on the accuracy 

of the classifications ideally, a sample of random ground-truth plots over each site would need to be 

carried out. This would help get ground-truth data that would cover the entire geographical area of 

the site as well as the variability within the site. 
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