

Economics of Segregation based on Internal Wood Properties

Dr. Glen Murphy GE Murphy & Associates

Dr. John Moore Scion, New Zealand

What Do Mills Want?

Obtaining the logs that are <u>best suited for</u> <u>their purpose</u> at the lowest cost possible is of prime importance for most mill managers.

Right External Properties

Right Internal Properties

Literature Review

- Many tools and techniques are available for segregating wood based on internal properties
- Few have been implemented commercially acoustics, density cores and visual indicators are more mature approaches.
- The benefits of segregating stands, stems and logs are not clear due to:
 - High variability in wood properties
 - Poor market signals in terms of price for wood with superior internal properties
 - Poor understanding of costs across the value chain.

Study Aims

To determine if the benefits of segregating stands, stems and logs outweighed the additional costs.

SEGMOD – a techno-economic model

- SEGMOD designed and constructed to determine costs and benefits of segregating logs at various intervention points in the supply chain
- Calculates return-to-log values at each intervention point for user-specified log types
- Optimally bucks tree lists based on in-forest RTL values
- Reports RTL value per hectare at each intervention point
- Facilitates comparison of alternative log segregation strategies.

Log Type RTL Flow Chart

If negative value for fibre set to \$1 per m³

Return-To-Log Values

Mill Door

$$RTL = VolConvFact * \left(\sum_{i=1}^{n} SawnProduct\% * SawnProduct\$ - Mill Cost \right) \\ + (1 - VolConvFact) * (Chip\% * Chip\$ + Hog\% * Hog\$)$$

Stand Optimization Flow Chart

SEGMOD Features

Mill Door Values

- Volume conversion factors based on Scion Sawing Studies
- Appearance grade recovery factors based on Scion Sawing Studies plus Industry Adjustments
- > Structural grade recovery factors based on SWI Sawing Studies
- Product prices supplied by user
- Mill processing costs accounted for
- Mill Yard Costs
 - No Sort
 - Sort at each mill type
- CPY Costs
 - No Sort
 - Structural

Acoustic Sort or Density Sort

Appearance

Resin Sort or PLI Sort

SEGMOD Features

Transport Costs

- Related to distance to CPY or Mill/Wharf
- Adjustment for Product Type
- Potential for truck configuration adjustment
- Harvesting Costs
 - Steep vs Not Steep
 - No Sort
 - Structural
 Acoustic Sort
 - > Appearance Resin Sort
 - Adjustment for number of sorts
 - > Potential for piece size adjustment

Inventory Costs

- No Sort
- Structural
 Acoustic
- > Appearance

Acoustic Sort and/or Density Sort Resin Sort and/or PLI Sort

SEGMOD Features

- Tree List supplied by user (decimetre height intervals)
 - Diameter
 - Sweep offset
 - Acoustic Velocity
 - Density
 - Quality Codes
- Optimal bucking using Dynamic Programming procedures. Handles up to 350 stems and up to 40 m break height per stem

Reporting includes

- > RTL values (\$/ha): total and by product class at each intervention point
- > Average mill gate RTL (\$/m³) by product class and mill door by log type
- \succ Optimal yields by product class (m³/ha and % of total)
- Individual stem bucking solution

SEGMOD Demonstration

scion	Log Se	grega	tion Econo	omics I	Nodel	1	Version 1.5 March 201	
Load Mill and Mill		Overa	all "Stumpage" V	alue <mark>(\$/</mark> ha)	Optimi	zation Prog	ress	
Yard Costs	Segregation Point		49733		-			
Load CPY Costs	In Mill Yard	Scenario ID Scen_5	Return to Log Values ((\$/ha) Appearance	Structural	Fibre	Export	
Load Transport Costs	At Landing	Adjust Mill	Mill Door	22420	46203	2503	32737	
Load Harvesting Costs	Distances (km) Forest to CPY	0	Mill Gate CPY Gate	22190	40600	2416	32/3/	
Load Inventory Costs	Forest to App. Mill Forest to Struct. Mill	113 135	Stump Pre-Harvest Invento	13448 ory 13433	23652 23616	-470 -475	13215 13185	
Load Product	Forest to Fibre Mill Forest to Port	94	Terrain Segregation		n Type		Sort Methods	
Prices	CPY to App. Mill	0	Steep	 Size and External Quality Plus Internal Quality 			☐ Density ☑ Resin ☐ PLI	
Load Log Specifications	CPY to Struct. Mill	0	C chick					
	CPY to Fibre Mill	0		Store	Results			

Four Case Studies

- SEGMOD populated with price, cost and stand data from companies operating in four regions of NZ
- 255 segregation scenarios were modelled
- Variations in segregation approach, stand type, stand location, terrain type, market focus, market horizon
- Number of sorts depended on where and when segregation was done and market focus

Number of Log Types

Market Type	Mill type	No Segregation	Stand-Level PHI Segregation	CPY & Landing Segregation	Mill-Yard Segregation
Domestic Focus	Pruned Appearance	1	1	3	1
	Unpruned Appearance	3	5	5	3
	Structural	3	5	7	3
	Fibre	2	2	2	2
	Export	3	3	3	3
"Equal" Domestic	Pruned Appearance	1	1	1	1
and Export	Unpruned Appearance	2	4	4	2
Focus	Structural	3	3	4	3
	Fibre	1	1	1	1
	Export	6	6	6	6

Structural Grade Sorting

Acoustics and Density Cores

Standing Tree

In Mill Bucking

Mechanized Processing

Mill Yard

Appearance Grade Sorting

Resin (Visual) and Pruned Log Index

Results: Highest Stumpage Value

Segregation Approach with Highest Stumpage Value

Results: Stumpage Value Increase

Key Variable	Variable Option	Segregation Approach			
		PHISeg	LandSeg	MillSeg	
Terrain type	Steep	×	×	×	
	Not steep	×	×	×	
Stand type	Pruned	×	×	×	
	Unpruned	×	×	×	
Market type	Domestic focus	\checkmark	\checkmark	\checkmark	
	"Equal" domestic and export focus	\checkmark	\checkmark	✓	
Market horizon	Current	\checkmark	\checkmark	×	
	Long term	\checkmark	\checkmark	×	

✓ Significant difference, at the alpha = 0.05 level, between variable option pairs within segregation approach columns.

Results: Highest Mill Door Value

Segregation Approach with Highest Mill Door Value

Results: Allocation to Markets

Effect of Segregation on Allocation of Volume to Markets

Conclusions

The economic benefits of segregating stands, stems and logs, based on wood properties, outweighed the additional costs for forest and mill owners in <u>most</u> of the scenarios evaluated.

Economics of Segregation based on Internal Wood Properties

Dr. Glen Murphy GE Murphy & Associates

Dr. John Moore Scion, New Zealand