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Abstract 

Waterways, water, and aquatic ecosystems must be safeguarded.  For forestry and forest 

practices, both the RMA and ECOP recognise the importance of protecting and monitoring 

water quality.  Turbidity is a qualitative measure of the amount of sediment in a waterway and 

a key indicative measure of water quality. The in-situ monitoring of turbidity in narrow 

waterways is both expensive and difficult. The opportunity to get indirect values using large 

spatial resolution datasets is not plausible with current technology. This report assesses the 

potential of using satellite imagery to estimate turbidity of waterways within New Zealand.  

Estimations of turbidity were made from satellite imagery (PlanetScope) using the semi-

empirical, generic equation developed by Nechad. This equation is unique in that it allows for 

the estimation of turbidity without prior derivation of a reflectance and turbidity relationship, 

requiring in-situ, site-specific measurements.  141 estimations of turbidity across four sites 

were made and compared to continuous in-situ data to assess the potential of the technology.  

There were two sites each in the Waikato River and Heathcote Stream respectively, each with 

varying widths and site conditions.  The four bands of the PlanetScope satellite imagery were 

compared for the accuracy of estimated turbidites.  

Results showed the green band (500-590Nm) produced the most accurate estimations of 

turbidity, followed by the red band (590-670Nm).  Turbidity estimations could be made at three 

of the four sites.  The final site could not be used as the river width and vegetation cover meant 

appropriate sampling locations could not be determined.  The method identified changes and 

peaks in turbidity, providing appropriate satellite imagery was available.  However, the 

accuracy of the estimations was not ideal, with the highest R2 value of 0.26.  It also tended to 

overestimate turbidity, with an average bias of 4.32 FNU.  This is likely due to the calibration 

of Nechad’s equation that was developed for moderately turbid, coastal waters.  Thus, the 

method is likely to have the most efficient application when used in conjunction with in-situ 

testing, identifying areas of high turbidity or points of change and allowing for further monitoring 

to be completed.  Other key limitations of the method include the waterway width, imagery 

availability, and weather conditions (cloud cover).   

In summary, there exists large potential in the application of remote sensing in the turbidity 

estimation and monitoring of waterways.  This would be especially true if the research was 

undertaken for the recalibration of Nechad’s equation for inland, freshwater waterways.  This 

would allow the development of a high spatial and temporal resolution dataset at a lower cost 

compared to other monitoring methods.  
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1. Introduction 
Turbidity is a qualitative measure of the amount of suspended sediment particles in water and 

a key indicator of water quality. Turbidity is strongly correlated with sediment, nutrients, and 

bacteria within water and has been used as a surrogate measurement for the impact of humans 

on waterways, monitoring of sediment levels and natural streams below soil moving operations 

(Sadar, 2017).   

Turbidity is measured as the relative clarity of water, in which the presence of suspended 

sediment particles block and scatter light transmittance (attenuation).  High visual clarity of 

water better meets the recreational and aesthetic values often desired by users.  As the 

turbidity value increases, the amount of suspended sediment particles within the water is also 

likely to increase (Sadar, 2017).  High levels of suspended sediment can have adverse effects 

on aquatic life, the most significant caused by light attenuation. This is due to the reduced 

vision of sighted aquatic organisms and reduced penetration of light for photosynthesis.  

Increased suspended sediment can also directly cause benthic smothering and irritation of fish 

gills (Davies‐Colley & Smith, 2001).  However, it should be noted that although increased levels 

of suspended sediment particles can cause these detrimental environmental effects, these do 

not always occur. Thus, it is not a direct measure of environmental health.  

Water quality is recognised as a key environmental factor that must be protected by the RMA 

(Resource Management Act 1991) (Reddy, 2017) and ECOP (Environmental Code of Practice 

for Plantation Forest) (NZFOA, 2015), both of which are governing documents for forestry 

operations within New Zealand. Turbidity as an indicative measure of water quality is often 

used for identifying possible detrimental effects that these operations can have on waterways.  

However, the continual in-situ monitoring of turbidity using field turbidity monitors is difficult, 

expensive and cannot be completed retrospectively.  Monthly monitoring or similar regimes 

can also be expensive or difficult due to limited access and associated time requirements. It 

has the potential to miss key sedimentation events.   

The National River Water Quality Network (NRWQN) is the most comprehensive freshwater 

quality monitoring network in New Zealand, consisting of 77 sites on 35 rivers (NIWA, 2020).  

Turbidity is measured in the NRWQN using handheld turbidity sensors in either FNU (Formazin 

Nephelometric Units) or NTU (nephelometric turbidity units), dependant on equipment 

availability.  Secchi depth is also commonly used in New Zealand for measuring water clarity 

(higher turbidity reduces clarity) (Hamill & Lew, 2006).  Secchi depth is like black disc depth 

but uses a black and white disk measured vertically, rather than the horizontal measurement 

of the black disc.  However, both measurements have been replaced in the National Policy 

Statement for freshwater Management by the Visual Water Clarity Tube measurement.  Thus, 

there is no standardised testing equipment or measurement units across New Zealand. 

Turbidity measurements are qualitative rather than quantitative, or that turbidity units such as 

NTU (Nephelometric Turbidity Units) and FNU have “no intrinsic physical, chemical or 

biological significance” (Campbell Scientific, 2014).  Thus, conversions between units or TSS 

(total suspended solids) are not possible; relationships can be derived although they will only 

hold true for a unique condition set.  Particle size, type and distribution will all change these 

conditions meaning a new model must be developed for each site, at each point in time 
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(Fondriest, 2014).  Below, Figure 1 shows the relative clarity of water samples at a range of 

turbidity (NTU) levels. 

 

This study aims to assess the potential of using remote sensing to determine the turbidity of 

waterways within New Zealand.  Through the use of satellite imagery with fine spatial resolution 

and the spectral responses of individual pixels within waterways, it is hoped a turbidity value 

can be estimated.  This will be achieved through analysis of suitable satellite imagery using 

the generic, multisensory equation  developed by Nechad et al. (2010) for the determination 

of turbidity in moderately turbid waters.  The estimated value will then be compared to 

synchronous in-situ measurements taken from continuous turbidity datasets provided by the 

Waikato Regional Council and Environment Canterbury.   

The results will be useful for helping determine historic turbidity levels and act as a substitution 

for, or assisting with, in-situ testing.  As satellite data is temporal and archived, this could allow 

for the historic turbidity of a site to be determined without any testing data equipment previously 

being installed, assuming archived imagery is available (n.b. archive imagery is data more than 

90 days old for PlanetScope constellations).  This has a large range of potential applications 

including judicial decisions, quantification of effects on water quality and establishing long term 

benchmarks.  It could also be used for monitoring a waterway along its length, allowing for the 

determination of point sources of pollution.   

  

Figure 1 – Relative clarity of water samples at a range of turbidities (NTU) (SABD, 2018) 
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2.  Literature Review 
2.1 – Turbidity in Forestry 
The impact of forestry on water quality is recognised as a critical component of forestry 

management (Tobin et al., 2007).  Turbidity is an indicative measure of water quality and thus, 

the management of it is also a critical component of forestry management.  The major causes 

of increased sediment levels (and thereby turbidity) in waterways due to forestry, is caused by 

the soil disturbance associated with activities such as cultivation, drainage, road construction 

and harvesting (Nisbet, 2001).  Governing documents such as the ECOP, RMA and other 

countries’ forest and water quality guidelines are intended to reduce the possible negative 

effects that forestry and other activities have on water quality.  

Webb and Haywood (2005) show forestry activities can provide both point and non-point 

sources of pollution.  Point sources consist of forded river crossings, direct drainage discharge 

into a stream, or a slip event.  Non-point sources may be caused by reduced groundcover 

conditions, soil compaction, and soil disturbance.  These cause increased level of soil erosion 

resulting in increased suspended sediment concentrations.  They further note that without soil 

conservation measures, “turbidities in excess of 100 NTU would not be unexpected during 

forestry operations” and in more extreme cases “it is conceivable that localised stream turbidity 

during an intense rainstorm could exceed 1000 NTU”.  This represents severe negative 

repercussions both environmentally and for the suitability of water downstream for other use 

cases such as drinking or agriculture.  Therefore, qualitative measurements such as turbidity 

are crucial indicators of forestry’s performance in protecting water quality. 

 

2.2 - Coarse Spatial Resolution Applications 
The turbidity of large waterbodies such as oceans and large lakes, have been measured 

remotely since 1974 when the first ocean observing satellites were launched.  These used 

polychromatic imagery to detect water colour, which after a relationship with in-situ turbidity 

measurements was formed, allowed for the estimation of turbidity.  The first relationship of 

estimated turbidity and suspended sediment concentrations was developed in 1981 (Curran & 

Novo, 1988).  These results tended to be inaccurate and inconsistent, with typical r2 values of 

around 0.5. 

Following the launch of multiple ocean colour satellites clusters after 2002 (e.g. Aqua by NASA) 

much progress was made in determining turbidity and other indicative measures of water 

quality (Shen et al., 2014).  These satellites differ from traditional polychromatic imagery as 

they achieve much greater accuracies when measuring light radiance, reflectance, and 

backscatter.  This allows for much more precise measurements of light attenuation and thereby 

derivation of turbidity.  Using ocean colour satellite clusters, Binding et al. (2005) achieved 

errors of 12% in moderately turbid coastal waters when estimating turbidity.  Further refinement 

of techniques and a better understanding of atmospheric interference allowed Chen et al. 

(2007) to achieve r2 values of 0.97 in low turbidity waters.  However, the low spatial resolutions 

of ocean colour sensors make them unsuitable for coastal and smaller water bodies.  The 

resolutions of these sensors range from 200m to 4km, with the majority being around 350m 

(Groom et al., 2019).  
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As satellite sensor capability increased with time, spatial resolution become finer, leading to 

the launch of satellites such as Landsat-8 (2013, 30 m) and Sentinel-2 (2015, 20 m).  These 

finer resolutions allowed for measurements of smaller waterbodies and coastal or estuarine 

environments.  Kuhn et al. (2019) compared synchronous imagery in large rivers to over 6000 

in-situ measurements taken by boat, recording mean errors of 4% and 13% between estimated 

and in-situ measurements for the Landsat and Sentinel clusters, respectively.  Larger errors 

were observed in higher turbidity waters, and both clusters tended to overestimate; this was 

attributed to the additional contributions to the red band from surface glint.  Inconsistencies in 

radiometric calibration between different sensors were estimated to account for 6% of the 

observed error.  Pereira et al. (2018) achieved r2 values of 0.88 between estimated and in-situ 

turbidity values using the Landsat-8 cluster in the Mississippi River basin.  This was achieved 

across a turbidity range of 80 to 2200 FNU, or suspended sediment concentrations from 44 to 

1130 mg/L, with estimated turbidity values below 300 FNU tending to be more accurate.  

Pereira et al. (2018) further acknowledged the use of remote sensing in addressing temporal 

gaps in datasets and the measurement of turbidity where no in-situ measurements are 

available.  

 

2.3 - Fine Spatial Resolution Applications 
Further development in sensor capabilities has again reduced spatial resolutions, with clusters 

now achieving <10 m resolutions.  This creates the possibility of measuring the turbidity of 

much narrower waterways.  Other sensor developments include an increase in the range of 

spectral reflectance measured.  An example of this is the red-edge band of the now-retired 

RapidEye cluster; this is described in a white paper by RapidEye (2012) as the transition 

between red and NIR (Near-Infra-Red) bands (690-730 nm).  It is useful for estimating Secchi 

depth; initial studies showed RMSE (Root Mean Square Error) of <0.7 m between estimated 

Secchi depth and recorded depth in estuaries with average Secchi depths ranging from to 1-

10 m (Gallegos et al., 1990).  Thus, the red-edge band has been used to great effect for water 

quality monitoring (RapidEye, 2012).  

Yigit Avdan et al. (2019) applied the red-edge band and RapidEye data to a smaller lake during 

a study in which multiple control points were selected and then compared to the estimated 

turbidity using a variety of different turbidity indices.  The highest correlation of different 

reflectance bands occurred between the in-situ turbidity and red-edge band with an R-value of 

0.9.  Note that the spatial resolution of the data at this location was 5m, while the average 

spatial resolution of the RapidEye data is 6.5m worldwide. Vanhellemont (2019) also 

investigated water quality parameters using both RapidEye and PlanetScope satellite data (0.5 

m spatial resolution).  They stated, “with their high ground resolution [in reference to RapidEye], 

these satellites could provide turbidity estimates in highly productive waters, smaller lakes and 

ponds, or narrow rivers.”  Their results showed an RMSE value of 6 FNU for water quality 

monitoring in moderately turbid (<80 FNU) coastal and inland waters.  

Yigit Avdan et al. (2019) and Vanhellemont (2019) both measured waterways in which multiple 

adjacent pixels fit within the waterways, averaging the estimations.  Isidro et al. (2018) 

investigated the use of only a single pixel that fit completely within the riverbanks, analysing 

quantifying the sediment levels in small rivers (4-10m width) using RapidEye (6.5m), Plediade-

1A (2m) and Spot6 (6m) satellite imagery.  Key findings showed that as waterway width 

increased, the standard deviation in measurements decreased, although results could still be 
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obtained from smaller waterways.  Issues faced include very low water levels (150 to 350mm), 

protruding rocks distorting results, and high turbidity levels.  Note that a key difference between 

Isidro et al. (2018) and my proposal is Isidro quantitively measures suspended sediment 

concentration, while I propose to measure turbidity (qualitative). 

The results of Yigit Avdan et al. (2019), Vanhellemont (2019) and Isidro et al. (2018) are 

meaningful for my proposal.  Each was able to estimate turbidity or suspended sediment 

concentrations in much smaller waterways than previously achievable with older satellite 

technology.  Both Yigit and Vanhellemont achieved high levels of accuracies in large 

waterways, while Isidro achieved lower levels of accuracies in a highly difficult waterway.  

There is a gap in research literature for the possibility of using remote sensing in narrow 

waterways to estimate turbidity.  

McCabe et al. (2017) stated that the PlanetScope (Cubesat) satellites with their unprecedented 

temporal and spatial resolutions could be used as an alternative method for assessing water 

quality using photogrammetry.  However, Topp et al. (2020) found they were prone to 

geolocation accuracy errors, radiometric inconsistencies across satellites and required difficult 

atmospheric corrections.  Vanhellemont (2019) quantified the radiometric inconsistencies 

between near-simultaneous PlanetScope images as 10% within the red band, and around 40% 

for the NIR band. Thus, the PlanetScope imagery has a lot of potential but would require a 

large amount of testing regarding image classification and quality control to produce accurate 

and consistent results.  The Hyperion satellite cluster (2.5m spatial resolution) also showed 

initial promise for inland water quality measurements but suffers from radiometric instability 

and high noise to signal ratio (Topp et al., 2020). 

Seeqeunt is currently developing a satellite-based water quality monitoring system that could 

monitor the quality of every lake globally and is being tested and funded within New Zealand 

(Seequent, 2019).  This utilises the Trophic Level Index, calculating nitrogen, phosphorus, 

clarity (turbidity), and chlorophyll-a.  The project aims to autonomously monitor the health of 

all New Zealand’s lakes and use historical data to identify seasonal trends.  A trial showed 

promising trends between estimated and measured variables for two lakes in the Canterbury 

region (Seequent, 2020).  This relies on the older Landsat-8 satellites with coarser spatial 

resolutions (30m) but highlights the possibility of autonomous monitoring systems for 

waterways. 
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3.  Objectives 
This study aims to assess the potential of using satellite imagery to determine the turbidity of 

waterways within New Zealand.  

This could allow for the determination of current and historic turbidity levels of waterways, 

identification of point sources of pollution and enable further research into large scale 

monitoring of waterways for water quality purposes at previously impractical data resolutions.  

 

4.  Methodology 
4.1 - Data Collection 
For this study, in-situ turbidity measurements were used to assess the accuracy of estimated 

measurements from satellite data, thus the limited availability of continuous in-situ data 

determined the sites that could be used.  Data was kindly provided by the Waikato Regional 

Council for the Waikato River, and by Environment Canterbury for the Heathcote stream.  This 

data consists of continuous turbidity measurements from in-situ instruments over the previous 

years.  The four data collection sites are described in Table 2.   

Table 1 - Description and location of site data with continuous turbidity data logging. 

Site  General Description Width (m) Coordinates 

A Waikato river elbow near outlet, wide, rural 250 -37.283, 174.843 

B Waikato river elbow in Hamilton, city 60 -37.791, 175.290 

C Heathcote Stream, tree cover present 8 -43.572, 172.617 

D Heathcote Stream, urban, narrow 6 -43.560, 172.648 

 

The sensor data was then checked over for issues, for example, Site C has patchy data during 

low flow periods and Site D initially suffered from power consumption and lens issues.  Thus, 

suitable periods of data were selected; these are periods of relatively consistent readings with 

gradual changes in turbidity over time and no quality issues noted by the operating technician.  

The turbidity readings for each day from 9am to 1pm were averaged, with the mean turbidity 

value used as the baseline for gauging the accuracy of the satellite estimations of turbidity.  

This period is used as all imagery from PlanetScope was captured within these times.  

Synchronous satellite imagery over these sites was then downloaded from PlanetScope using 

a custom area of interest of the site and date range.  The four band PlanetScope satellite 

imagery was then selected, subject to an initial visual inspection checking for cloud cover or 

other visual errors over the site.  The imagery was then downloaded, and a metadata extraction 

script was used to extract the appropriate metadata (shown in Appendix A).  The relevant 

metadata consists of the filename, reflectance coefficient, band harmonisation factor, offset 

factor, date, time, cloud cover (%), and unusable data (binary).  The unusable data value is a 

binary value used to check for the presence of the unusable data mask automatically 

calculated by PlanetScope, present if large visual shifts or data corruption has occurred.  The 

reflectance coefficient, band harmonisation factor, and offset factor are all used in the 

conversion from digital numbers of pixel reflectance, to top of atmosphere reflectances.  Cloud 

cover is given as a percentage and is a measure of the total cloud cover of the scene.  The 
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date and time undergo further processing to convert from UTM to New Zealand’s time zone, 

GMT+12/13, also accounting for daylight savings.  

 

4.2 - Estimation of Turbidity 
PlanetScope imagery is a ToA level product meaning it already has atmospheric corrections 

applied and a relative spectral response curve fitted.  Thus, no further corrections must be 

made before the estimation of turbidity.   

The turbidity equation used,  equation 1, was also used by Vanhellemont (2019).  It was 

developed by Nechad et al. (2010) as a generic multisensory algorithm for the mapping of total 

suspended solids in turbid waters.  Thus, it is not specifically designed for estimating turbidity 

in specific environments such as estuarine or coastal waters but is more generic and should 

produce more accurate estimates in a wider range of applications.  It is unique in that Nechad’s 

equation is the only semi-empirical equation that doesn’t require initial in-situ measurements 

to derive a turbidity relationship from readings (Dogliotti et al., 2015).  All other equations are 

better described as indexes, requiring a relationship between factors such as suspended 

solids, chlorophyll-a concentrations, and reflectance, to estimate further turbidity readings for 

reflectance values.   

𝑇 =  
𝐴 ∙  𝑝𝑤  

1 −  
𝑝𝑤  
𝐶

+ 𝐵    (𝐹𝑁𝑈) (1) 

 

From equation 1, T is turbidity in FNU and 𝑝𝑤 is the top of atmosphere water reflectance 

corrected for atmospheric interference.  A, B and C are coefficients derived from the closest 

wavelength to the central wavelength of the band.  Using band-weighted wavelengths is an 

alternative method and could produce more accurate results, but during testing by Nechad et 

al. (2010) little difference was noted.  Figure 2 describes the appropriate coefficients for the 

central wavelength of any given measured band, while Table 2 describes the appropriate 

coefficients for PlanetScope imagery.  

Table 2 - Appropriate coefficients for the analysis of PlanetScopes data different bands 

 

To extract 𝑝𝑤, the respective images must first be imported into ArcMap for processing.  Five 

points at the location of the sensor were then created, from which the average pixel brightness 

values (digital numbers) for each band are extracted using the multi-values to points tool.  The 

narrower the waterway the less ‘bunched’ these points are to ensure different pixels are 

sampled.  These extracted digital numbers are then exported to Excel and the five results for 

each respective band are averaged.  This digital number is then converted to 𝑝𝑤 using equation 

2. 

 

Band Wavelength (nm) A B C 

Green (B2) 500-590 122.15 3.32 53.7 

Red (B3) 590-670 229.45 2.32 74.9 

NIR (B4) 780-860 1664.01 1.65 77.3 
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   𝑝𝑤 = (DN𝑎𝑣𝑔 × reflectance coefficient × band harmonisation factor) + offset (2) 

 

Where DN𝑎𝑣𝑔 is the average digital number for an image, and other factors (derived from 

metadata) are used to transform the digital numbers to make them comparable across different 

sensors or satellites (Planet, 2016).  Equation 1 was then used to estimate turbidity.  The 

estimated turbidity was then compared to the synchronous in-situ sensor turbidity readings.  If 

multiple images are taken on a single day, the values are averaged across the image, while 

analysis of individual turbidity readings will also be completed.   

  
Figure 2 - Coefficients for determination of turbidity relative to central wave length (Nechad et al., 2010). 
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5. Results 
5.1 - Overview 
The turbidity of the four data collection sites was estimated using satellite imagery from the 

PlanetScope Array.  The time periods over which turbidity was estimated for each site were 

selected based on the in-situ data.  Comments on the data (based on comparison to laboratory 

water sample testing) were used to determine a two- to four-month period in which the in-situ 

data was most likely to be accurate.  Common errors that could occur with in-situ data 

collection include smearing of the sensor lens, battery power running out or the water level 

decreasing below the sensor level.  For each data collection site and respective time period, 

satellite imagery was downloaded from PlanetScope.  The number of images and data 

collection period for each site are shown in Table 3.  

Table 3 – Waterway, data collection period and the number of images turbidity estimated from by site. 

Site  Waterway Data Collection Period No. of Images 

Site A Waikato River 15/12/2020 - 14/02/2021 47 

Site B Waikato River 5/2/2020 - 25/5/2020 60 

Site C Heathcote Stream N/A N/A 

Site D Heathcote Stream 15/12/2020 - 8/2/2021 34 

 

Within these results the most appropriate band for estimating turbidity was first determined, 

then the results of estimating turbidity at each site are reported on a site-by-site basis.  Initially, 

an overview of the data and characteristics of each site are shown, followed by a more in-

depth analysis of interesting points for the site.  Points of interest include events such as large 

peaks of in-situ turbidity, or where there are large discrepancies between estimated and in-situ 

turbidity.  Finally, a linear regression analysis of each site is discussed.    

There was significance variance of in-situ readings over the period of 25 days, 14/12/2020 to 

7/1/2021 at site A.  The average standard deviation of readings was 0.91 with a mean of 

5.71FNU.  The satellite imagery used is only captured between the periods of 9am and 1pm, 

thus, the in-situ reading for a day will be taken as the average of this period.  In the same 

period this reduced the standard deviation to 0.56, with a mean of 5.22FNU.  This level of 

accuracy is sufficient for this project, but future research could consider taking the nearest in-

situ reading if more precise readings were required.  

 

5.2 - Band Comparison 
Before turbidity was estimated for all the sites, the most appropriate (accurate) band was 

determined.  This was completed by comparing the estimated turbidity of each band to the in-

situ turbidity for the Site A dataset.  Note that of the four bands of PlanetScope’s imagery, the 

blue band (455-515 nm) is not used as its central wavelength is below the range acceptable 

for use in Nechad’s equation (Equation 1).  The comparison used an average of five sampling 

points at the location of the in-situ sensor at Site A, as shown below in Figure 3.  Table 4 shows 

the average estimated turbidity values for the green, red and NIR bands of the PlanetScope 

imagery and the average in-situ value from 15/12/2020 to 14/02/2021.  
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Table 4 - Average estimated and in-situ turbidity values for site A from 15/12/2020 to 14/02/2021. 

 Average Turbidity (FNU) 

Green Band 4.96 

Red Band 5.44 

NIR Band 63.19 

In-situ average 4.48 

 

From Table 4 it is shown that the NIR band consistently estimated values that were an order 

of magnitude higher than both the other bands and the in-situ turbidity averages.  Thus, the 

other bands produce more accurate estimates of turbidity and the NIR band will not be used.   

This was expected, as the NIR band is not often used for remote water sensing applications, 

and Vanhellemont (2019) noted radiometric inconsistencies of 40% in the NIR for near-

simultaneous images of the PlanetScope array.    

To compare the appropriateness of the green and red bands, the estimated turbidity of each 

band for each image has been compared to the respective in-situ turbidity.  This is shown in 

Figure 4, which additionally plots the average of the red and green estimated turbidities for 

comparison.  It shows that each band follows the same trend, this is to be expected as the 

bands simply change the coefficients used in Nechad’s equation (Section 4.2).  Thus, the red 

band is more sensitive to changes in turbidity, with peaks being higher and troughs lower.  The 

green band is typically less sensitive to the changes in turbidity, with less variation.  Finally, 

when the estimated turbidity for each day was compared to the closest in-situ measurement 

(15-minute intervals), the green band was more accurate in 25 out 38 occasions, or 66% of 

the instances.  Therefore, the green band was used preferentially throughout the remainder of 

the analysis. 

Figure 3 - Site A sampling points and location.  
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5.3 - Site A  
Site A is in the Waikato River near the outlet at Port Waikato, at a point where the waterway is 

both deep and wide.  The sampling points for this are shown in Figure 4.  The in-situ 

measurements and estimated turbidity from 15/12/2020 to 14/02/2021 are shown in Figure 5.  

Firstly, note that the turbidity of the river was typically quite low with the maximum difference 

in in-situ turbidity of 7.0FNU.  Small changes in turbidity are both harder to detect and less 

likely to have negative environmental effects (this characteristic applies to all sites).  Overall, 

the satellite estimation of turbidity follows the same trend as the in-situ data, although it does 

differ at several key points.   

The satellite data has successfully identified the initial increase in turbidity at point A but 

underestimated it the following two days.  From the 4/1/2021 to 6/1/2021, imagery was 

available every day to estimate turbidity.  On each of these days, there were three separate 

images analysed; these results are shown in Table 5.  Firstly, note that the near synchronous 

images from different satellites are achieving very similar estimates for turbidity, well within the 

expected margin of error.  However, although consecutive images are estimating turbidity 

consistently, it consistently underestimates the magnitude of the increase.  Figure 4 shows this 

occurred across all bands and is not confined to the green band.   

 

 

Figure 4 – Comparison of different bands estimation of turbidity for site A from 15/12/2020 to 14/02/2021. 
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The satellite data also identified two further peaks (point B) on the 3/2/2021 and 5/2/2021.  On 

the 3/2/2021 there was no in-situ sensor data available, thus, this peak is not able to be verified.  

However, there is a large difference between the two estimations of turbidity made on the 

3/2/2021, with measurements of 4.32 FNU and 10.14 FNU.  Thus, it is likely that the second 

estimation is incorrect and skewing the average for the day.  The estimation on the 6/2/2021 

is also likely incorrect, but due to it being the only imagery available on the day it is not able to 

be compared to other estimations.  Note that both these estimations differ considerably from 

the average estimated turbidites on the 4/2/2021 and the 5/2/2021.  It is not apparent why 

these overestimations occurred, with minimal cloud cover in the images and no visual shifts in 

colour.   

Table 5 – Estimated and in-situ turbidity readings for Site A from the 4/1/2021 to 6/1/2021. 

    Turbidity  

Date Time Estimated (FNU) In-situ (NTU) 

4/01/2021 11:40:36 AM 8.6 6.3 

4/01/2021 11:40:38 AM 8.5 6.3 

4/01/2021 12:23:25 PM 4.5 5.6 

5/01/2021 9:54:01 AM 5.0 9.9 

5/01/2021 9:54:02 AM 5.0 9.9 

5/01/2021 11:26:10 AM 4.5 12.8 

6/01/2021 11:28:11 AM 4.7 7.1 

6/01/2021 11:28:14 AM 4.7 7.1 

6/01/2021 12:23:19 PM 4.8 7.1 

 

Figure 5 - Site A in-situ turbidities compared to estimated turbidities from 15/12/2020 to 14/2/2021. 

B 

A 
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The linear regression analysis of the results of site A is shown by Figure 6, which has two 

series, a first with all data points, and a second series with the two obvious outliers removed.  

This shows quite a weak relationship between the measured and in-situ turbidity for both data 

sets, although removing outliers increased the goodness of fit.  Note that a stronger 

relationship between the trends would have a 1:1 trend of data points, where the estimated 

turbidity is the same as the in-situ turbidity.  The intercept of these trend lines for all data points 

was 4.36FNU, which shows the bias of Nechad’s equation to overestimate turbidity in this 

application.   

 

 

Figure 6 - Linear regression analysis of Site A. 
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5.4 - Site B  
Site B is in the Waikato River near Hamilton City centre, again at a relatively wide and deep 

point of the river.  The sampling points and location are shown in Figure 7.  Turbidity was 

estimated for imagery from the 5/2/2020 to 25/5/2020, with the results of this shown in Figure 

8.  Overall the satellite consistently overestimated turbidity, especially at the lower turbidity 

levels, but the general trend of the in-situ readings is reflected by the estimated turbidities.  

This is most apparent at the increase of turbidity levels at points B, C, and D.  At these points, 

the in-situ readings increased, and an increase of relatively the same magnitude was observed 

in the estimated turbidities 

 

At point A there are two large peaks in estimated turbidity of 5.99 and 6.08 FNU; both were 

derived from single images with no obvious visual shifts in colour and cloud cover percentages 

of 12.8% and 50.6% respectively.  The in-situ data readings were consistent with the average 

readings at the times these images were taken.   At point B there is another peak in turbidity 

on the 30/3/2020, once again there is no obvious visual shift in colour, however, cloud cover 

was significant at 79.4%.  Cloud cover is likely affecting the estimation of turbidity in these 

images.  

Point E is taken as the average of two turbidity estimations of 7.88 and 7.71 FNU which is 

significantly higher than the in-situ readings. However, once again there are no obvious visual 

shifts in colour and cloud cover of 3% and 0% respectively.  These images were taken 30 

minutes apart and are shown in Figure 7.  It is unknown why both images are overestimating 

turbidity.   

The linear regression analysis of site B is shown by Figure 9.  The relationship between the 

estimated and in-situ turbidity is better than Site A, trending closer to a 1:1 relationship.  The 

goodness of fit is also much better, with a R2 value of 0.254.  The intercept of trend is 3.33 

FNU, showing the bias of the estimation method to overestimate.  A two-sample t-test with 

equal variance was also completed, resulting in a two-tail P-value of 2.5e-18, or very significant 

(<0.05).  This means that it is very unlikely that the observed correlation between the estimated 

and in-situ turbidities was simply a function of chance.  

Figure 7 - Site  B sampling points, location and images of peak at point E.  
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Figure 8 - Site B in-situ turbidities compared to estimated turbidities from 5/2/2020 to 25/5/2020. 

A 

B 
C 

D 

E 

Figure 9 - Linear regression analysis of site B. 
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5.5 - Site C  
Site C is in the Heathcote Stream near Cashmere and has a width of 8m at the in-situ sampling 

point.  However, the overhanging trees mean that the effective width of the waterway, when 

viewed on satellite imagery, is less than three metres.  Thus, Site C showcases the limitations 

of remote turbidity sensing in that the portion of the waterway visible from the sky must be 

large enough to enclose a single pixel (3x3 m for PlanetScope imagery).  Thus, it is not possible 

to estimate turbidity at Site C as the waterway cannot be discerned from the imagery.  This is 

shown in Figure 10, with the google maps imagery, which is artificially enhanced for reference, 

and two different PlanetScope images by comparison.  A waterway that was more suited to 

this method of turbidity estimation would ideally be wider and with less cover from the 

surrounding environment.  However, if there was a pool or wide bend of a waterway that met 

the above conditions, this could also be used.  Alternatively, higher resolution imagery could 

be considered.   

 

 

5.6 - Site D  
Site D is the Heathcote Stream near St Martins, downstream of Site C.  This site is narrower 

in width than Site C at 6m, but it has significantly less tree cover allowing for turbidity estimation 

from PlanetScope imagery.  The site and sampling points are shown in Figure 11.  Images 

were analysed from 15/12/2020 to 8/2/2021 with the results shown against in-situ turbidity in 

Figure 12.   

 

 

Figure 10 - Site C imagery comparison between Google (left) and Planet Scope (center and 

right). 
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Overall, the readings from site D are very consistent but fail to identify any peaks in the data.  

This however cannot be attributed solely to Nechad’s equation, but rather the lack of imagery 

available for analysis during these periods of increased turbidity.  The most significant outlying 

estimation was on the 24/01/2021 with a value of 6.81 FNU.  The image for this estimation is 

shown in Figure 10 and is without any visually apparent issues with geolocation or colour shift.  

However, metadata shows the overall scene to have a cloud cover of 16%. This is not 

significantly greater than other imagery but illustrates the possibility that cloud cover has 

affected the turbidity estimation.   

Figure 13 shows the linear regression analysis of Site D, which has a relatively weak relation 

between estimated and in-situ turbidity.  However, the interception of the trend line is consistent 

Figure 11 – Site D sampling points and location (6.81 FNU 

pictured). 

Figure 12 - Site D in-situ turbidities compared to estimated turbidities from 15/12/2020 to 8/2/2021. 
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with the other sites at 5.27 FNU, again showing the bias to overestimate.  The R2 value is also 

relatively high at 0.191, with better goodness of fit than Site A.   

 

6. Discussion 
6.1 – Potential of Remote Turbidity Estimation Applications 
The objective of this report is to assess the potential of using remote sensing to determine the 

turbidity of waterways within New Zealand.  The equation used for this, Nechad’s equation, 

was originally designed for use in coastal waters of low to moderate turbidity.  Thus, this study 

represents a non-intended use case of the equation.  However, it is still a valid choice in that 

it is the only equation that does not require initial in-situ testing to estimate turbidity.  Coastal 

waters differ from inland waters in their salinity, algae concentrations, sediment type and the 

absorption of light by phytoplankton.  These factors affect the backscattering and reflectance 

of light, thus changing the estimated turbidity.  Therefore the implementation of this method is 

not as accurate as other studies such as Dogliotti et al. (2015), who achieved a mean relative 

error of 13.7% across their dataset of 106 locations.  This level of accuracy achieved within 

this study was much less than this. 

However, the absolute value of the turbidity measurement may be viewed as inherently less 

important than the relative change of it.  That is, increases in turbidity above 30% influence the 

aesthetic and safety aspects of contact recreation (Ministry for the Environment, 2002), as well 

the environmental effects discussed in the introduction.  The results show that changes in 

turbidity can be detected if appropriate imagery and sampling locations are available, with the 

identification of peaks in turbidity on sites A and B being good examples of this.  Thus, I 

propose that the ideal use of this technology is as a precursor to the use of more expensive, 

in-situ sampling methods, in identifying the locations that may require attention.  It allows for 

Figure 13 – Linear regression analysis for Site D. 
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the development of a dataset with very fine spatial extent, but coarse temporal extent at a 

relatively low cost.  The accuracy of measurements will not be as good as in-situ 

measurements, but the spatial extent of the dataset is unparalleled when compared on a cost 

basis to other sampling methods.  

A possible implementation includes the monitoring of an entire length of a waterway.  For 

example, sampling points could be placed in intervals along the length of a waterway, and 

changes in turbidity along the length could be observed.  This could allow for the determination 

of point sources of pollution at scales unreasonable with in-situ testing.  The technology could 

also be implemented for the wide-scale monitoring of lakes, regardless of the ease of access.  

Note that a similar tool is being developed by Seequent currently.  Both these implementations 

of the technology could allow for ‘problem’ areas with unreasonably high turbidities or large 

changes occurring to be identified.  This would allow the problem areas to be investigated 

further and the implementation of measures to protect and retain water quality.   

 

6.2 – Factors Influencing Estimation of Turbidity 
The most significant factor in determining turbidity is the requirement of having a single, 

unobstructed water pixel visible within the imagery.  This is shown by Site C, where the 

overhanging vegetation and narrowness of the river prevented this.  The required size of this 

pixel is determined by the spatial resolution of the imagery, where PlanetScope imagery is 

3x3m.  From comparison of the sites, the greater the width of the waterway, the easier it is to 

estimate turbidity; both Waikato River sites were much easier to locate the sampling points 

within compared to the Heathcote Stream.  Furthermore, if the imagery has issues with 

geolocation and inconsistent ground control points (which can be common) the wider the 

waterway, the more allowance for error before the sampled pixels are not entirely water.  Thus, 

sites A and B are examples of ideal applications for the technology, Site D was marginal and 

Site C was simply not achievable.  Note that finer resolution imagery would allow for narrower 

waterways to be sampled.  

The second most significant factor is the availability of imagery.  This is affected by weather, 

site location and required spatial resolution of the imagery for the site.  Imagery is only suitable 

for estimating turbidity from if the sampled pixels are fully visible and uninterrupted by clouds 

or vegetation.  Site location will often affect the temporal resolution of imagery available, for 

example, sites near major cities or with higher population densities are more likely to have 

imagery available as there is a higher demand for imagery of the location.  For the spatial 

resolution of the imagery, as the requirements increase, the availability of imagery at desired 

resolution decreases, and the cost often increases significantly.  These factors mean that New 

Zealand is not ideal for remote image acquisition compared to other countries.  The low 

population results in lower demand for imagery and it’s Māori name, Aotearoa, or the ‘land of 

the long white cloud’ holds true in image acquisition opportunities.  Therefore, the temporal 

resolution of data sets is location dependant, but New Zealand faces relatively difficult 

conditions compared to other countries.  A further result of this is the difficulty in identifying 

peaks in turbidity.  These peaks are often associated with adverse weather events such as 

rain or storms, both of which are accompanied by cloud cover, making turbidity estimation 

impossible.  This is an inherent weakness of the technology/method and cannot be overcome.   

Several environmental factors can also affect the estimation of turbidity such as cloud cover, 

the sun zenith angle, and the viewing angle of the satellite.   The sun zenith angle and viewing 
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angle were not analysed as other factors were determined to have a much large effect on 

accuracy.  However, Dogliotti et al. (2015) noted their mean relative error within their 

estimations increased by up to 7% as the viewing and zenith angles increased.  Within the 

results, many of the outlying results were estimated using imagery with high cloud cover 

percentages.  This occurs because the cloud intercepts the part of the light, scattering the rays 

resulting in less light reaching the sensor.  Thus, it mimics the effects of sedimentary particles 

in water, meaning turbidity estimations are overestimated.  This is most aptly shown by Site B, 

at points A and B.  

 

6.3 – Overestimation of Turbidity 
The base flow turbidity levels are consistently overestimated at all sites.  This was 

demonstrated with a positive bias in estimations across all linear regressions, with an average 

bias across all sites of 4.32 FNU.  This is most likely due to the calibration of Nechad’s equation 

for moderately turbid coastal waters.  As the in-situ turbidites are much lower than the waters 

it was calibrated for, it tends to overestimate.  For Nechad’s equation (section 4.2) a constant 

is added to a function, where the function is always positive.  This means that no matter what 

reading, the minimum turbidity level will be equal to the constant, or 3.32 FNU for the green 

band.  The effect of this is especially apparent in sites B and D, where the baseflow turbidities 

are often below 3.32 FNU.   

It is possible that the reduction of this constant would allow for turbidity to be estimated more 

accurately.  However, this reduction would be site-specific and estimated turbidity must be 

correlated against in-situ measurements.  This site-specific approach would defeat the purpose 

of a semi-empirical, generic approach.  Thus, a better approach would be to recalibrate the 

equation for freshwater waterways as discussed in Section 6.4.  

 

6.4 – Future Research Opportunities 
Perhaps the most significant research opportunity is the recalibration of Nechad’s equation for 

freshwater, or New Zealand waterways.  The results above have shown that changes in 

turbidity can be detected, although the accuracy of turbidity measurements could be improved.  

This would involve non—linear regression analysis of in-situ water reflectances and 

appropriate, simultaneous satellite imagery (Nechad et al., 2010).  Nechad et al. (2010) further 

noted that the variability between different geographic regions is significant, although the 

studied area (Southern North Sea) was a widely variable region that is representative of many 

other regions.  By creating a model that is calibrated for freshwater waterways it allows for 

much more representative estimations of turbidity.   

Other possible research future research opportunities lie in the application of this method to a 

much larger range of waterways and lakes, or implementation along the length of a waterway.  

The determining factor in the ability to do this would be the availability of in-situ data to check 

the validity of the estimations.  However, if it was shown that changes in turbidity could be 

reliably identified and long-term trends can be observed, it could allow for the better 

management of our water resources and increased efficiency when allocating resources to 

ensure they are used where they are needed most.   
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6. Conclusion 
Through the comparison of in-situ turbidity measurements to estimated turbidites from satellite 

imagery in New Zealand waterways, this dissertation has shown that there exists a large 

potential for remote sensing applications in turbidity sensing.  Key findings show that the 

method can identify changes in turbidity providing that appropriate imagery is available, 

although the accuracy of individual estimations could be improved.  The wider the waterway, 

the easier it is to estimate turbidity from, with the spatial resolution of satellite imagery acting 

as the defining constraint.    

The areas of application for this technology are likely in the assisting of in-situ testing, 

identifying areas of high turbidity or abrupt changes.  It is possible that the recalibration of 

Nechad’s equation for inland, freshwater waterways and lakes could result in more accurate 

estimations of turbidity.  Other possible areas for future research include the application of the 

existing method to a wider range of areas and water bodies such as lakes, subject to the 

availability of in-situ measurement by which to correlate estimated results. 

Key limitations of this method exist in the availability of imagery, spatial resolution, and 

calibration of Nechad’s equation.  An inherent limitation is the tendency of increased turbidity 

to occur during storm or rainfall events, or at the same time when cloud cover means imagery 

is not obtainable.  Thus, the method is likely best used in conjunction with in-situ 

measurements.   

Overall, this dissertation has that there is much potential in the application of remote sensing 

technologies in the turbidity monitoring of waterways.  Further research is required for 

meaningful and consistent application of the technology, but the possibility of application has 

been shown.   
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8. Appendix A 
""" 

Report information: 

 

The purpose of this is browse the file folder that the imagery resources are downloaded too, 

and extract all the required metadata from the files to utilise the imagery with Nechads 

universal turbidity equation.  

This will only work with data downloaded from Planet Imagery.  

 

Band number extracted: 1 (red) 

Required inputs: path to imagery folder 

 

 

#Remember to use double back slashes in your path! 

#Note that time values are GMT+0, so should be treated accordingly 

 

It will save the output in the same folder as the script as a csv file called 'metadata' - remember 

to rename and save this file as something else, otherwise it will be overwritten! 

 

""" 

#importing required modules 

import xml.etree.ElementTree as ET 

import os 

import numpy as np 

import datetime as dt 

from pytz import timezone 

 

 

#identifying and listing metadata xml files in a folder 

path  = 'C:\\410 

Arcmap\\Imagery_batch1\\Dec14_Feb15_21_BuxtonTrc_psscene4band_analytic_sr_udm2\\f

iles' 

files = [] 

for filename in os.listdir(path): 

 if filename.endswith('metadata_clip.xml'): 

  files.append(filename) 

 else: 

  continue 

 

#conversion of date and time data and adjusting for timezone difference 

fmt = "%Y-%m-%d %H:%M:%S %Z%z" 

def date_correct(date_norm, time_norm): 

 date1 = date_norm + ' ' +time_norm 

 date2 = dt.datetime.strptime(date1, "%Y-%m-%d %H:%M:%S") 

 date_utc = date2.replace(tzinfo=timezone('UTC')) 

 date_nz = date_utc.astimezone(timezone("Pacific/Auckland")) 

 return(date_nz) 



Page | 29  
 

 

#creating blank data array and looping variables 

data_collat = [[0 for i in range (len(files)+1)] for j in range(len(files)+1)] 

data_collat[0] = ('Filename', 'Reflectance Coefficient', 'Band Harmonmisation', 'Offset', 'Date', 

'Time', 'Cloud Cover', 'Unusable Data') 

indexing_loop_val = 1 

 

#looping through all identified metadata files in folder and extracting data 

for current_file in files: 

 current_file_path = path + '\\' + current_file.replace('\\','\\\\') 

 #print(current_file) 

 

 #parsing xml metadata file & navigation file 

 tree = ET.parse(current_file_path) 

 root  = tree.getroot() 

 

 #pulling reflectance scale factor 

 reflect_co = (root[4][0][5][2].text) 

  

 #pulling band harmonisation factor 

 try: 

  band_co_array =  (root[4][0][5][3][3].text) 

  band_co = band_co_array.split( )[0] 

 except: 

  band_co = 1 

 

 #pulling final offset value 

 try: 

  offset =  (root[4][0][5][3][4].text) 

 except: 

  offset = 0 

 

 #pulling date and time value and completing correction for timezone 

 time_raw = (root[1][0][0].text) 

 date = time_raw.split('T')[0] 

 time = time_raw.split('T')[1] 

 time = time[0:8] 

 corrected = str(date_correct(date, time)) 

 date = corrected[0:10] 

 time = corrected[11:19] 

 

 #pulling unusable data mask and cloud cover 

 cloud_cover = (root[4][0][2].text) 

 #print(cloud_cover) 

 unusable_mask = (root[4][0][4].text) 

 #print(unusable_mask) 

 

 #saving pulled values to data array and advancing indexing loop 
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data_collat[indexing_loop_val] = current_file, reflect_co, band_co, offset, date, time, 

cloud_cover, unusable_mask 

 indexing_loop_val += 1 

 

#Prints data, coverts to numpy array and saves as csv files 

data_array = np.array(data_collat) 

#print(data_collat) 

np.savetxt('metadata.csv', data_array, delimiter=',', fmt='%s') 

 


