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ABSTRACT 

This report investigates the application of recent machine learning techniques for computer vision in 

the forestry industry, specifically grapple yarding. Increased computing power of embedded systems, 

coupled with improvements in open-source software have resulted in these techniques being applied 

in a wide range of sectors for real-time computer vision. The research aims to provide guidance for 

manufacturers considering automation of the grapple carriage, as to whether current open-source 

software is fast enough and accurate enough for a real-time application. The software being tested is 

a single-stage instance segmentation algorithm known as YOLACT (You Only Look At CoefficienTs) and 

is being assessed for its performance in detecting logs in the footage generated by the grapple camera. 

A review of the current applications of computer vision applications in forestry is presented, and a 

review of the mechanisms of the algorithm being tested for application. The YOLACT algorithm is an 

open-source machine learning model that can be trained to recognise objects within an image or 

video. Other applications of YOLACT, as well as the original study, have achieved accuracy in detecting 

objects >95% and at speeds above 30FPS (Frames per Second), which is sufficient for a real-time vision 

application. YOLACT is an instance segmentation algorithm, which produces masks to identify the 

outline of the object being detected. 

Two datasets were produced for this study. The first was generated from footage from a grapple 

yarding operation in Nelson, NZ, from a Falcon Claw grapple camera. The image quality was 720x408p, 

with approximately 8 hours of video collected. The second was generated from a smaller segment of 

footage from a grapple yarding operation in Canterbury, NZ, using a DJI drone recording at 

1920x1080p. Stills were generated from the footage, and the logs in the images were masked with the 

Labelstudio tool. The first dataset contained 233 instances of logs to be grappled, and 213 in the 

second. 

The YOLACT model was trained on each dataset, for 2000 iterations. with each dataset producing a 

trained model for detecting logs. Initial weights from RESNET-50 were used to reduce training time 

and decrease the effects of using a small dataset. The computer hardware used for evaluation was a 

GeForce RTX 2070 8GB RAM GPU, which has comparable computing power similar to currently 

available hardware for embedded machine learning architecture. After training was completed, the 

trained model was evaluated on still images excluded from the original datasets, to generate insight 

on the model’s ability to predict. 

Overall predictive accuracy for the model was poor, achieving a mask AP (0.5) for the grapple camera 
footage of 12.8%, with the performance dropping significantly to 1.1% at AP (0.9). The higher quality 
footage obtained by drone achieved a mask AP of 21.6%, although performance reduced to 0% at AP 
(0.9). Both trained models achieved high speeds for inference during evaluation, with the low-quality 
footage averaging 50.2FPS processing speed, and the higher quality footage achieving 31.5FPS. 

 
Inferences made by the trained model show difficulty identifying entire logs, and frequently partitions 
a single log as two or more separate instances. Other issues include misidentification of the claw as a 
log due to some components having similar shape and colour, and missing logs that should otherwise 
be identified. Both models had similar issues, although the general accuracy of the higher quality data 
was superior, with a small reduction in the speed performance. For a robust commercial application, 
a larger dataset of high-quality images would be required. 
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2 INTRODUCTION 

Extraction of felled logs from the cutover is a critical part of the harvesting process and forestry 

business model. Logs that have been felled in the forest block need to be returned to a landing or 

processing location, where they can be cut into logs and transported out of the forest. There are 

several methods for this process, depending on the terrain being logged, the availability of capital and 

operation size. For harvest areas with steep slopes (>40%), cable yarding is generally the preferred 

system for extraction. This system utilises a choker, a claw or a grapple device to hold the logs, with a 

carriage or cable system used to pull the logs back to the landing [1]. 

Cable yarding was introduced into New Zealand in the 1950s and has since been the preferred method 

for extraction where slope steepness prevents ground-based harvesting methods [2]. Cable yarding 

has other benefits over ground-based harvesting systems, such as reduced soil disturbance, reduced 

need for earthworks and roading, and reduced machinery travel across steep slopes. [3,4]. Historically, 

logs were attached to the cable system by means of a choker, with a person on the ground required 

to manually complete this task, as seen in Figure 1.  

 

Figure 1 - Basic cable yarding setup. Source: [5] 

In recent years, operations have become increasingly mechanized, driven by the need for improved 

health and safety outcomes for the workforce performing this task, and to improve productivity and 

value recovery. Grapple carriages avoid the need for workers to be on the ground and reducing this 

component of the workforce was a key outcome of the NZ steep slope harvesting initiative that ended 

in 2017 [6]. Surveys of preferred rigging configurations for cable harvesting operations in New Zealand 

show a trend towards using mechanised and motorised grapple systems to extract timber, with 

mechanical grapple being the preferred rigging configuration for 38% of contractors in 2018, with a 

shotgun motorised carriage second most popular at 18%. Nearly 50% of crews in New Zealand are 

utilising some form of grapple yarding as of 2018, which has sharply increased from 4% in 2011. [7] 

Grapple yarding has four stages to the workflow. It begins with the outhaul step, where the carriage 

leaves the yard and travels out along the cable to the next log to be grappled. Next is the grappling 
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step, where a log is located and grasped in the claws of the grapple. The return step follows, where 

the grasped log is dragged back to the yard, and the release, where the log is placed in the yard, before 

returning to grapple the next log [8]. Other machines may also be present in this process, with a 

shovelling machine assisting with the grapple step by presenting logs to the claw, and a shovelling 

machine receiving these logs at the yard. These systems commonly have a camera that feeds a birds-

eye view of the underside of the grapple to the operator of the yarder, who uses this information to 

control the grapple and grasp the logs that have been felled. This footage comes in a range of 

resolutions and views. Some systems integrate lighting into the system to illuminate the scene and 

make night-time operation possible.  

 

Figure 2 - Cable yarder operator and controls. Source [2] 

Steep slopes forestry blocks are a significant proportion of the forest for harvest in New Zealand and 

will make up an estimated 60% of the annual harvest for New Zealand by 2025 [9]. As such, there will 

be a continued need for grapple yarding, and the skilled operators required to operate the machinery. 

Demand for these workers is high, and the forestry industry and the global labour force are facing 

challenges. A 2021 survey of the NZ forestry labour force highlighted that most firms were 

experiencing shortages of machine operators or expected to encounter labour shortages in future 

[10]. The survey also identified that forestry firms expect to continue to have issues filling positions, 

especially in experienced roles. To attract more people to the workforce, jobs need to be seen as more 

comfortable, safe and fulfilling. Experienced operators are demonstrably more productive than 

inexperienced operators, and as such reducing the time taken to train an operator to an experienced 

level will only improve the productivity of the work [11]. In addition to this, machine operators are 

typically a bottleneck in forestry operations [12]. 

Automation, or partial automation, is a potential pathway for improving both employee satisfaction 

and improving the lifetimes of machines [13]. Partial automation is the automation of some 
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component or task of a workflow or job description. This can improve the quality of work by reducing 

the cognitive load on machine operators, by the removal of menial and repetitive tasks, as well as 

decreasing the time taken to train operators. This may have an associated benefit of making these 

roles more attractive and therefore encouraging more people to take on these roles. In addition to 

making jobs more attractive, partial automation may allow for a harvesting system where a single 

operator manages more than one machine. As an operator may be 30-40 percent of the operating 

cost of a machine, this may be a large cost saving for forest harvesting operations. [14]. 

Automation of machinery for forestry has made some progress, with machines already having some 

autonomous capabilities. In the domain of yarding, automation or partial automation is currently 

operational for two phases of the cycle, the outward-haul and in-haul phases of the extraction cycle. 

[15]. In addition, some tower yarders can be remotely controlled, such as the Konrad KMS 12U and 

the Valentini V1500. Studies into the automation of yarders have shown improved productivity in 

harvest locations where the yarding distance is below 200m, even where no crew had been removed 

due to the automation. [16]. Other applications of computer vision for specific forestry applications 

can be found in the literature review of this report.  

The next step towards automated yarding using a grapple is to automate the detection and grappling 

of logs. Automation of yarding has been identified in [17] as the most achievable automation step for 

forestry in the near term. This study intends to test currently available machine vision algorithms. This 

will determine whether it is possible to integrate an automated vision system in a grapple yarding 

system, and whether this can be implemented at a speed adequate for assisting or automating part 

of the yarding task in a harvesting operation. 

 

3 LITERATURE REVIEW 

3.1 COMPUTER VISION OVERVIEW 

Computer vision is a broad discipline that uses algorithms to interpret data from images and video to 

make interpretations and provide information on the scene. In a machinery context, this is to provide 

information for the machine controls and guide mechanical outputs. 

Computer vision is typically one of four tasks. The simplest is image classification, in which an image 

is labelled with a type or category. Object detection is more complex, where an object in the image is 

both classified and located by a box. Semantic segmentation is a process in which each pixel in an 

image is given a label, to accurately position the target in the image. The most complex of these 

operations, instance segmentation, segments instances of the same type of object in the same image, 

and labels them as individual objects. Instance segmentation is the task being attempted in this 

method, as autonomous operation will require exact positioning data to provide guidance to the 

grapple carriage, and the ability to discern between different logs in that image [18]. 

These tasks can be approached with two methods of implementation. Traditional computer vision 

uses explicit mathematical algorithms in sequence to pick features from an image, such as edges, 

colors or brightness, and determine their location and classify them accordingly. This method is well 

suited to tasks with adequate illumination, consistent lighting and clearly defined objects [19]. 
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In comparison, deep learning, a subset of artificial intelligence, can be used to achieve the same task. 

A deep learning model extracts features and context from an image by training it on a large dataset of 

images where the target object is labelled. Through a complex process of feature extraction, where 

the algorithm learns through an optimisation process the features common to the target object, it can 

determine where the target object is with a high level of accuracy. Given its increased complexity, this 

method is more computationally expensive than traditional methods [20], but is better able to 

understand context, varied lighting, and variable orientations than traditional approaches. It is for this 

reason this study investigates machine learning methods, as the cutover is a complex environment 

with a range of lighting conditions. 

As determining the location and position of the log is important, instance segmentation will be the 

task attempted in this research. Instance segmentation can be performed through one of three 

methods; detection based, pixel based, or a single-stage methods. Single-stage methods have the 

greatest computational efficiency and can achieve real-time inference results with current processing 

power. For this reason, they will be evaluated for this method as real-time inference is a critical 

component of a vision system for the grapple camera.  

3.2 COMPUTER VISION IN FORESTRY 

While forestry has used computer vision for years in the sawmill sector, recent advances have 

capitalised on the improvements in machine learning and increase in computing power of embedded 

systems and have attempted or investigated detection in the forest environment. 

Fortin et al. [18] investigates multi-stage instance segmentation of logs for forwarders and grasping 

applications on landings. The results did not provide the level of accuracy required for automation (AP 

57.53%), but the results indicated that with a larger dataset and more processing power, there is 

potential for assistance to operators or full automation in the future. The study differs to the proposed 

method as it did not test single-stage segmentation techniques and thus did not achieve a real- time 

frame rate, with the fastest method tested achieving 12.3 frames per second. The pose of the logs was 

also significantly different, as well as the aspect ratios of the logs in the dataset. The dataset comprised 

of 220 images, containing 2500 log instances. 

Instance segmentation of fallen timber has also been achieved by Polewski et al. [22] with a high level 

of accuracy. The run-time for this algorithm however is in the range of seconds-minutes, which is not 

suitable for a real time application. The precision achieved in this application was 82%-91%, with a 

recall of 70%-79%. This method incorporated imagery from the near infra-red channel, which 

improves accuracy significantly. However, the improvement accuracy comes with a corresponding 

drop in processing speed. 

Real-time object detection has been achieved in the forest environment, with a YOLO object detection 

framework being implemented to detect obstacles for a machine navigating the forest [23]. This 

operation had realistic lighting settings, but the objects were simple, such as rocks or stumps, and 

were well defined in the setting. This method used a relatively small dataset of 200 training and 75 

validation images, however, only achieved a frame rate of 7.4FPS. Felled logs pose a more difficult 

machine vision challenge, as they may not fall fully in the extent of the camera view, and thus 

distinguishing its edges is not straightforward. 

P. Han [24] investigated the use of object detection in the forest environment, to identify logs for 

measuring sweep. The study claimed a detection success of over 90%, although this was not strictly 
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quantified in the results section. The paper utilised Mask- RCNN for the training, but the study gave 

no guidance as to the real-time capability of the method. The method did show the value of using high 

quality images, as it achieved quality performance from a small number of training samples, and the 

video quality that the data was derived from was high. 

Detection of standing trees was achieved in [25] by da Silva et al., evaluating the accuracy of several 

machine learning algorithms. Whilst this study investigated object detection, as standing trees have a 

known pose that allows the co-ordinates of the tree to be understood more easily than a felled log, 

high accuracy was achieved (90%) at an inference speed of 12.5FPS. This method had a very large 

(2895 images), high quality dataset that also used image augmentation to improve the accuracy of the 

model. Image augmentation alters the images slightly to provide the algorithm more training data, 

with images that are still relevant to the end use, either by rotation, zoom, flipping or blurring. 

These methods all have achieved computer vision in the forest environment, although real-time 

instance segmentation, especially in the context of the grapple camera, is yet to be explored. Of the 

open-source real-time instance segmentation frameworks available, YOLACT is the most implemented 

of these [26]. For this reason, alongside the significant success of YOLO networks in the reviewed 

research, it will be explored as a potential method for achieving real-time instance segmentation with 

this task. 

3.3 YOLACT ALGORITHM 

3.3.1 YOLACT (You Only Look At CoefficienTs) 

YOLACT [27] is a real time instance segmentation algorithm. It was developed as the first single-stage 

instance segmentation algorithm, designed to be faster than existing instance segmentation 

algorithms, such as Mask-RCNN. The paper achieved 29.8 mAP on the benchmark COCO (Common 

Object in Context) dataset, at a frame rate of 33.5FPS. For an explanation of AP (average precision), 

this has been outlined in section 5.4 of this report.. YOLACT has been successfully implemented in 

multiple research papers since its development, with results exceeding 95% mAP [28] with a high-

quality dataset for traffic signs, and mAP of 32.44% in an application of crack identification in concrete 

[29]. The YOLACT algorithm is a single stage instance segmentation model, which takes an object 

detection framework and then adds a mask branch to the process to perform instance segmentation, 

as can be seen in figure 3. YOLACT’s feature backbone utilises the RESNET-101 architecture and adds 

a feature pyramid network. The YOLACT architecture is a parallel computation of two separate tasks, 

to produce segmentation maps. The first task is an object detection head that detects objects in the 

image and predicts mask coefficients for each anchor point derived from the feature pyramid. The 

second task in the segmentation branch is generating a dictionary of prototype masks over the entire 

image via a fully convolutional network. The outputs of these two objects are combined to generate 

masks for the instances in the image. By using convolutional layers in task 1 to produce spatially 

coherent masks and fully connected layers in task 2, which produce semantic vectors, the overall 

instance segmentation can be completed efficiently to give real-time results.  
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3.3.2 Object Detection 

Object detection occurs in the feature backbone and feature pyramid of the YOLACT architecture, and 

one of the YOLACT branches. The feature backbone is RESNET-101, a convolutional neural network 

(CNN) with 101 layers. There are three types of layers in a CNN, convolutions, pooling and fully 

connected or non-linear layers. The overall network takes an image, extracts features and attempts 

to infer the class of the image, or objects within the image [30]. This process is iterative, as the network 

compares its estimations with training data and adjusts its weights according to the labelled data and 

repeats the process. Once trained, the network can be used to inference new images from outside the 

training set for detection applications. 

3.3.3 Convolutions 

Convolutional layers are layers within the CNN for extracting features from an image. Convolution 

layers pass a kernel over the image, with a given set of weights, to produce a new image that 

emphasises certain features, such as edges or corners. These layers are stacked in series to create a 

network, which allows for the model to make inferences about complex features such as texture and 

relationships between features. Figure 4 shows a basic convolution process using a kernel. 

 

Figure 4 - Convolution layer, Source: [30] 

Figure 3 - YOLACT architecture, Source: [27] 
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3.3.4 Pooling 

Pooling layers take an image, or matrix of values, and reduces the size of that matrix, taking the 

maximum, minimum, average or any number of complex functions of the pooled area. The pooling 

step reduces the importance of location of features within the image, by creating down-sampled 

feature maps [31]. These feature maps can give a summary of the presence of features in a map and 

reduce the image size, improving computational efficiency. Two different possible pooling functions, 

maximum pooling and average pooling, are shown in figure 5, demonstrating the downsizing of the 

input to a pooled output. 

  

 

Figure 5 - Pooling layer, Source: [31] 

3.3.5 Fully Connected Layers 

Fully connected layers are typically the final layer in a CNN. Fully connected layers connect the outputs 

of previous layers and passes them through a weight matrix, which produces an output vector [32]. 

The output vector can be used to compare against the training data set, and the weights used to 

compute the vector updated based on the result. Figure 6 shows a simple diagram illustrating an FCN, 

where each of the final neurons is connected to all the neurons before it. 

 

Figure 6 - Fully Connected Layer, Source: [32] 

Object detection is utilised again in the YOLACT method in the mask coefficient generation step. The 

YOLACT object detection here has 3 components, a predictor for each class of object c, 4 coefficients 

for a bounding box and k coefficients for the mask. The architecture for this step is shown in figure 7. 
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The additional mask coefficient provides the YOLACT model a coefficient for each mask prototype 

produced, to compare with training data to improve segmentation. 

  

 

Figure 7 - YOLACT object detection head, Source: [27] 

3.3.6 Fully Convolutional Networks (FCN) 

Fully convolutional networks are a class of neural network that can be used for segmentation tasks 

[33]. They are used in second branch of the YOLACT algorithm, to generate prototype masks. An input, 

typically an image, is passed into the network in the form of an RGB image of size n*n*3. The FCN is 

comprised of layers, performing pooling, activation, or convolution functions, of which none are fully 

connected. These layers reduce an image in an encoding process, in which each pixel is labelled based 

on the context of the image, and then resize the resulting feature into an image of the same size of 

the input [34]. This resized image contains a mask of objects in the image that have been classified 

according to the model training. The YOLACT model creates prototype masks via this process to output 

to the final classification step. 

 

 

Figure 8 - Fully convolutional network and masked output, Source: [33] 

3.3.7 Non-Maximum Suppression 

Non maximum suppression is a part of the YOLACT framework, which selects the most appropriate 

mask for the object detected. After the mask proposals are generated by the FCN, and objects 

detected within them, the proposals are eliminated by evaluating the intersection over union for each 

proposed bounding box [35]. Starting with the highest confidence mask, intersection over union for 

each mask is evaluated, removing lower confidence prototypes and leaving only the instances with 

the highest confidences. The algorithm will produce one mask for each object detected, with the most 

confident box being selected, which thresholding and cropping is applied to, generating the output of 

the model. 
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Figure 9 - Non-maximum suppression of pine trees, Source: [36] 

3.3.8 Transfer Learning 

Transfer learning is a technique used in machine learning applications to use weights from other 

datasets to assist with inference on new objects, which assists the training with detecting features 

common to many objects [37]. This reduces training time for new objects and has been implemented 

in this method. The proposed method uses the RESNET-50 YOLACT weights generated from the COCO 

(Common Object in COntext) dataset. RESNET-50 weights gave the best results for mAP in the original 

YOLACT implementation [27], and have been utilised in this method for processing the images from 

the harvest site. 
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4 OBJECTIVES 

The primary objective of this study is to evaluate a currently available instance segmentation 

algorithm for use in grapple yarding operations. Evaluating this software will provide guidance as to 

whether an autonomous yarding system could be built implementing this technology. Instance 

segmentation has been chosen as the proposed method, as an autonomous yarding system would 

require the position and orientation of the log being detected. Instance segmentation can provide 

this information to a system via the mask output, whereas a bounding box in an object detection 

algorithm cannot. Due to the number of potential logs in each frame, each instance needs to be 

identified, therefore semantic segmentation will not be adequate for the task. The YOLACT algorithm 

has been selected for its speed performance in other applications, which makes it the most likely 

method to achieve real-time detection for this task with available hardware. 

The criteria for this assessment will be average precision (AP), a metric used in evaluating the 

accuracy of predictions of machine vision systems. This measure is defined in the method section of 

this report. The task of the algorithm is to identify and mask the outline of a “target log.” A target log 

for this study has been defined as: 

-A log that is at least 50% visible along its length, within the frame of the image 

-Not already held in the grapple claw, where a grapple claw is present 

-Is in the cutover, as opposed to on the landing 

A target log may be partially obscured by other logs, or by foliage, as this is realistic to expect in a 

cutover. As only logs that are lying in the cutover need to be detected for grappling, there is no need 

for the algorithm to detect logs already grappled/when the grapple is closed, or logs on the landing. 

However, it is likely that the algorithm would still be capable of detecting these. 

In addition to the accuracy of the model, the speed will be assessed. Frame rate required for real-

time operation in machines is typically in the range of 15-30FPS [38], and an AP typically above 90% 

depending on the application and level of automation being designed for. This FPS will be assessed 

on a hardware system comparable to currently available hardware for embedded systems.  

In addition, the two performance variables will be assessed on footage of different video quality. 

This will provide information on what level of data quality will be necessary to build a functional 

automated yarding system, and how the video resolution influences the speed of inference. 

A secondary objective of this study is to build several high-quality, annotated datasets for log 

identification. These may be used by researchers to supplement machine learning training in future 

research, or to progress the development of a commercial log detection software. These datasets 

will be made available on GitHub as a repository for future projects to download and access. 
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5 METHODS 

5.1 DATASET CONSTRUCTION 

5.1.1 Dataset A – D.C. Equipment footage 

The dataset was constructed from four segments of footage from a grapple yarding operation in the 

Nelson region of New Zealand, all approximately two hours long, and one shorter, half-hour segment. 

The footage shows the view from the grapple camera, which is a birds-eye view of felled logs on the 

cutover. The footage collected is from the New Zealand summer period, where outdoor lighting is 

strong and consistent, on days where the weather was fine and sunny. The 5 separate pieces of 

footage are from the same forest block. Due to the duration of the footage, lighting conditions do 

change, with shadows lengthening and shortening due to the angle of the sun. However, as the 

footage is taken primarily from midday, the appearance of the logs is relatively consistent, especially 

in colour. This can vary considerably in sunset and sunrise conditions. The video footage is from D.C. 

equipment, with the footage being captured by a DMAC-LCP Ag-Cam installed on a Falcon Claw 

grapple. The footage is recorded at 1280x720p, however the capture card used to record the footage 

has a maximum output of 704x480p, hence this footage is down sampled to 704p in this study.  

     

Figure 10 – Sample images from D.C. dataset (pre-annotation) 

To create the sample used for training the selected model, the video footage was separated into still 

images using VLC media player. This method conserves the aspect ratio and quality of the images 

provided in the video footage; hence these will be generated at 704x480p. Stills were generated at 2 

second intervals from the footage. 

As a significant portion of the footage does not contain targets to be annotated for network training, 

only a selection of the stills will be used for the model training. A selection of 100 images have been 

chosen for the annotation process based on the following criteria. 

 -Image is clear/not blurry  

 -Contains a clear view of a target log/s 

 -Logs are well lit by the sun 

 -Grapple is at the cutover, as opposed to the yard 
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Although the same log may be present in multiple images included in the training dataset, all images 

are unique. The same log, but in a different part of the frame or in a different context, for example 

having a nearby log removed, may appear multiple times in the training dataset. It still has use in 

training the model, as it gives the model understanding of the different positions and contexts the 

same log may be found in. Further simplification of the model has been achieved by only including 

scenes where the grapple is travelling over or lowering to a target log. The dataset therefore excludes 

images of logs at the landing, as well as images where the grapple is in its return cycle. This is 

appropriate, as an automated yarding system would only require log detection on the outgoing part 

of the yarding cycle, as once it has grappled a log, it needs only to return to the landing. A further 12 

images were selected from the stills to be used in model inference, that were not annotated. 

5.1.2 Dataset B – Rayonier Drone footage 

The second dataset was generated from footage taken from a DJI done in a forest in North 

Canterbury. The total period of footage used to generate stills is approximately 5 minutes of flying 

footage, but is feature-rich, and therefore contains enough logs to generate a dataset for training. 

The stills are generated at 2 second intervals, with the footage at 1920x1080p. Conditions in the 

forest were overcast, and taken at midday in September, early spring. Despite the weather, the logs 

in the images are well lit and easily distinguishable from the surroundings. Two segments of footage 

were from the live harvesting operation, and two from a selection of piled logs just aside from the 

harvesting operation. As this footage is from a drone, the height above the cutover varies due to 

manual operation, and in general is higher than would be expected from a grapple camera. As such, 

there are typically more logs in each image. The freshly harvested trees have a large amount of 

foliage included, with the older stems being more visible along the trunk, as can be seen in figure 11. 

The images were subjected to the same criteria as the D.C. imagery. 5 additional images were 

selected from the dataset to be used for model inference. 

 

5.2 ANNOTATION 
After creating the dataset of images, the images were annotated using the Labelstudio tool. This open-

source tool allows a user to define the edges of log instances, to mask a log in the cutover. In images 

where multiple logs are present, they are each annotated as a single instance, as opposed to labelling 

them as groups or piles of logs. Labelstudio annotates the COCO format as a .JSON file, which can be 

interpreted by the algorithm for training. 

An additional 12 images from the DC dataset, as well as 5 from the Rayonier dataset, were selected 

for use in qualitative inference in the results, to assess how the model views the data from a human 

Figure 11 – Sample images from D.C. dataset (pre-annotation) 
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perspective and to measure the speed. The speed is measured by providing the trained model with a 

video to inference on and averaging the speed of inference over the process in a Python script in 

Jupyter Notebook. The code for this step can be viewed in the GitHub repository. 

5.3 NETWORK TRAINING 
The YOLACT algorithm is provided with a set of base weights to initialise the model. These allow the 

algorithm to take the learning from other object detection tasks before fine tuning to the specific task 

of identifying logs. The RESNET-50 weights have been utilised in this study, as these performed the 

best in the initial YOLACT paper [27]. RESNET-50 weights are from the RESNET architecture trained on 

the ImageNet database, a collection of nearly 15 million annotated images. These weights are not 

forestry-specific, but provide the YOLACT algorithm with some understanding of what general physical 

objects look like and their properties. This is known as transfer learning and is an industry standard 

practice for deep learning in computer vision applications. It has the benefit of reducing the size of the 

dataset required to train the model [39]. 

As the model takes images of any size, no additional pre-scaling or data adjustment was required for 

the dataset before passing to the model. Batch size used for training was 8, with the model trained 

for 2000 iterations. The learning rate initialises at 1x10-3 and decreases linearly by a factor of 10 during 

training at steps 1200, 1600 and 1800. The YOLACT algorithm has built in testing to prevent it from 

over-training or generalising to the target images, with the iterations specified will be sufficient to 

fully train the model. 

To train the network, the annotated dataset is split into training and test data. The model will “learn” 

what a log is based on the training data, and then test these assumptions on the test data, which gives 

it feedback as to whether its guess was correct, allowing it to iterate and improve. Industry standard 

practice is to provide 80% of the data to training and the remaining 20% to test, which has been 

employed in this study.  

Training and evaluation will be completed on a machine using a GeForce RTX 2070 8GB RAM GPU with 

CUDA 11.4, with an Intel Core i7-8700 6-thread CPU. Modifications to the code and adaptation for this 

application in Python was via the Atom IDE on the Linux Mint 20.3 OS. The specifications of this 

computer system is comparable with currently available rugged embedded computing, such as the 

NVIDIA AGX Xavier Industrial. Measuring the computing power of AI systems is computed in FLOPS 

[40], with the GeForce RTX 2070 having 7.5 TFLOPS of power, and the NVIDIA Xavier achieving 

approximately 11 TFLOPS [41]. 

 

5.4 MEASUREMENT 
The results are interpreted in terms of average precision (AP), which is a common metric for evaluating 

machine vision applications. Average precision combines several identification metrics into a score 

that can be used to evaluate the overall performance of the model.  
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Precision is the primary component of the AP score, and is calculated as follows. In this study, a true 

positive is the algorithm predicting a log where one exists, and a false positive is a log is predicted that 

does not exist.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

 

Figure 12 - Calculation of precision, Source: [42] 

As there will be some discrepancy between the mask produced by the annotation and the predicted 

mask of the algorithm, a threshold must be identified. The measure for this threshold is intersection 

over union, which is calculated as seen in figure 13 below. It quantifies the amount of overlap between 

two boxes, or masks as are used in this application.  

 

Figure 13 - Calculation of Intersection over Union. Source: [42] 

For this study, consistent with [18], an IoU of 0.5 has been set as the threshold for correctly identifying 

a log. Although in practice this may be less that the accuracy required to pick up a log, as the grapple 

carriage nears the target log, it will have an increasingly detailed view and therefore be able to refine 

its recognition of the log. 

As precision on its own does not account for incorrect predictions, the recall metric is also calculated. 

Recall is calculated as 

Recall = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 Negatives) 

A false negative is registered when an annotation provided in the training dataset is not identified by 

the algorithm. This represents a log that has not been identified on the cutover and would pose a 

problem for a working prototype, as logs would be left on the cutover. 
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Average precision is then calculated as the area under the precision-recall curve. AP is commonly 

evaluated at a range of differing IoU thresholds, which will be presented in the results section, with a 

high value being indicative of a robust and accurate vision application [42]. Mean average precision is 

used when multiple classes of objects are being detected, however as there is only one class in this 

study, average precision is used. 

6 RESULTS 

6.1 RESULTS OF DATASET CONSTRUCTION 

6.1.1 D.C. Dataset 

The dataset creation yielded a total of 16563 images. The training dataset was constructed from these 

images, with 112 images selected from the stills. Stills from all five video segments were used to 

ensure that the samples were representative of slight variations in conditions between the videos, 

and that the model will be able to inference on logs. 

6.1.2 Rayonier Dataset 

The dataset creation for the Rayonier data yielded 165 images. 27 of these were selected for 

annotation, with a further 5 kept for inference. 

6.2 RESULTS OF ANNOTATION 
100 images were successfully labelled from the stills created in 6.1.1. In the 100 images for the D.C. 

dataset, 233 log instances were masked. These annotations were split 80:20 into a training and 

validation set using the open source Cocosplit tool, and used for network training. The 27 images in 

the Rayonier dataset contained 213 log instances that were annotated. The data is available online in 

the GitHub repository. Figures 14 and 15 show examples of annotation in the Labelstudio tool. 

 

 

 

Figure 14 – D.C. dataset images, before and after annotation 
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6.3 RESULTS OF NETWORK TRAINING 

6.3.1 D.C. Equipment footage 

6.3.1.1 Quantitative Results 

The training was able to train the model to achieve an AP (0.5) of 12.76%. As a comparative measure, 

the algorithm evaluation also computes a value for the accuracy of a bounding box. This was also 

relatively low, achieving 17.2 %. As can be expected, the model performance decreases significantly 

as the IoU threshold decreases, illustrating the difficulty in producing masks of logs at higher levels of 

precision.  

IoU Threshold 0.5 0.6 0.7 0.8 0.9 

Box (Average Precision) 17.2 11.1 6.2 2.7 1.1 

Mask (Average Precision) 12.8 8.6 4.9 1.5 0.0 

Table 1 - Quantitative Model Performance, D.C. 

The speed of the network was evaluated by taking the raw data from the model evaluation script with 

test video footage in Python. The average processing over the evaluation of the video was 50.2 FPS. 

Raw data is available in the GitHub repository. 

6.3.1.2 Qualitative Results 

Figure 16 below shows inferences on 12 images by the trained model. These images came from the 

stills generated for the annotation dataset but were withheld to show how the model performs on 

data it has not seen previously. Each instance is identified by a box, with the extent of the instance 

colored where the algorithm believes the target object is. The number in the corner of each bounding 

box shows the algorithm confidence in its prediction. The threshold for this inference has been set at 

0.3 to maximise the information that can be gleaned about the workings of the model. 

Figure 15 – D.C. dataset images, before and after annotation 
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In several of the inferences, 1,3,5,6,8 and 12, no log is identified by the algorithm. Although the 

training dataset contains several instances where vertical logs are present, although partially occluded 

by the edge of the frame and the grapple itself, these logs do not appear to be picked up by the 

machine. This is of particular concern as this is an orientation that logs are likely to be presented at to 

the grapple, and as such would not be detected and therefore yarded in an automation application. 

As the machine learning algorithm is somewhat of a “black box,” it is difficult to infer what is causing 

the issue, but it is likely that the target object beginning or ending outside of the image make it difficult 

for the algorithm to classify correctly. This is discussed further in the discussion, section 7. 

There are also several examples of the algorithm only detecting part of a log, specifically inferences 2, 

7 and 10 where only part of a log are identified as an entire instance. This would also pose issues to a 

potential application of this software, as the position of the log provided to the yarder would be 

incorrect, resulting in the log being either picked up in the wrong spot, creating difficulties in returning 

the log to the landing. In addition, inference 10 identifies one log as two separate instances. This would 

cause similar problems as identified above, with grappling and yarding the log difficult where the 

machine does not understand where the true centre of mass of the log is. 

 

Figure 16 - Inferences on 12 images not included in the D.C. annotated dataset 

  

Inference 1 Inference 2 Inference 3 Inference 4

Inference 5 Inference 6 Inference 7 Inference 8

Inference 9 Inference 10 Inference 11 Inference 12
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6.3.2 Rayonier Footage 

6.3.2.1 Quantitative Results 
 

IoU Threshold 0.5 0.6 0.7 0.8 0.9 

Box (Average Precision) 27.9 14.1 11.7 0 0 

Mask (Average Precision) 21.6 18.0 9.6 2.0 0 

Table 2 - Quantitative Model Performance, Rayonier 

The quantitative results indicate that the model trained on the Rayonier footage performs 

significantly better than the DC footage. Mask AP at the 0.5 threshold was 21.6%, and box at 27.9%. 

Performance drops off significantly as the IoU threshold increases, and interestingly, box precision is 

lower at 0.8 than mask precision, although the low predictive accuracy of mask (1.98) in this instance 

shows there is little inference to be made from this observation 

Using the evaluation function within the YOLACT using a video, the average FPS of the processing 

ability was 31.5FPS over the video.  
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6.3.2.2 Qualitative Results 

 

Figure 17 above shows the trained model’s inference on data excluded from the training dataset. 

The inferences show issues that are similar to the DC dataset. Of note, is that the model misses 

multiple logs in the cutover, especially in inference 5 and inference 1. Again, several logs are not 

identified as single instances, rather as multiple smaller logs. Inference 5 also has an instance where 

two logs have been detected as a single instance. However, inference 2 shows an example of a 

successful detection of a small log that is part of a mostly obscured stem.  

 

  

Figure 17 - Inferences on 5 images not included in the annotated Rayonier dataset 

Inference 1 Inference 2 Inference 3

Inference 4 Inference 5
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7 DISCUSSION 

The overall results of the study show that both models, trained on their respective datasets, perform 

poorly when inferencing new data. Compared with other applications of the YOLACT algorithm 

[27,28], the model has poor accuracy in detecting and masking a log and is especially prone to missing 

logs that should be identified by the program. 

7.1 DATA QUALITY 
All machine learning models rely on the quality of the features that it can identify in the training set. 

The more consistent, detailed, and distinct from the surrounding environment and objects these 

features are, the higher the likelihood that the model can distinguish the target objects from its 

surroundings. There are several issues in these datasets, and the environment that the logs are in, 

that affect the quality of features within the dataset annotations. 

The DC dataset has very low image quality, which may have contributed to the lack of accuracy in the 

results. Although this allowed it to perform at high speed, it is likely that it reduced the amount of 

information the algorithm was able to obtain from the images and discern logs from their 

surroundings. The machine learning algorithm relies on the image providing features of the target 

object to give the model an understanding of the features that logs contain. As the images are 

generally low quality, there are fewer discernible features with which to differentiate the logs from its 

surroundings. The D.C. logs main discernible features are straightness and colour, but these are 

common to other objects in the image, such as branches and the ground.  

The Rayonier footage is of higher quality, with features being more detailed. Small details, such as 

bark texture, small branches and a greater depth of colour can be identified as compared with the DC 

footage. This contributes to its greater predictive accuracy compared with the DC model, as features 

unique to the logs such as butt ends or areas on the log where bark has been stripped, are well defined. 

In addition to increasing feature density, generating quality masks in the annotation section is easier 

with higher quality data. This is due to the easier identification of the boundaries of the log, which 

compounds the effect of high-quality data.  

While not explored in this study, adding markers or discerning features to objects for detection is a 

common practice in machine vision applications, for example QR codes. While this would add 

complexity to the harvesting process, spray paint or other marking could be applied by the harvesting 

head at the time of felling, providing more information to the model as to what a log is, as it will be 

the only object in the frame with the colour of the marking. 

7.2 INFERENCE ABILITY 
Although YOLACT, as with all machine learning models, is a “black box,” meaning that the exact 

reasons as to why it performs in a certain way are not known, some insights can be delved from the 

inference images in figures 16 and 17. In general, the model is poor at detecting logs, with it missing 

several target logs in each frame. Particularly in the D.C. data, figure 16, many of the logs that should 

be identified as target logs are missed by the algorithm. The algorithm appears to struggle with logs 

that are not completely within the frame, such as inferences 1,3,4 and 6, although also fails to detect 

the end of a log in inference 9. Most logs that are vertically oriented are missed, which may point to 

insufficient examples of logs in this orientation in the training data. Logs at orientations other than 

vertically aligned to the image are detected. Misidentification of branches is seen in inference 4,9 and 
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10 of the DC dataset, which demonstrates the algorithm difficulty in discerning a log and a branch, as 

they share similar features (bark, colour, straightness). In addition, it has issues identifying logs as 

single entities, and instead separates a single log into multiple instances, seen in instance 10. This 

would pose issues for a working prototype, as determining a point on the log to grapple it would be 

difficult with multiple entities being recognised. 

In the Rayonier data, many logs are also missed, but several target logs are identified in their entirety, 

particularly in inferences 2 and 5. Inference 5 shows an example image from a very dense pile of logs, 

where the algorithm does not correctly identify all logs in the image. Smaller sections of many of the 

logs are identified, which illustrates the difficulty the algorithm has in identifying the boundary of the 

log, which may be due to the similarities between the background of the logs, often dirt, and the log 

itself. Inferences 4 and 5 also contain examples where several different logs are identified as one log, 

despite there being foliage or ground in between them. This may have arisen from the inclusion of 

logs in the dataset that were partially obscured, so the algorithm believes that the small sections are 

part of the same log.  

7.3 SPEED 
Speed results for the model exceeded expectations, especially for the lower quality DC dataset. Other 

literature, as well as the YOLACT benchmark study on the COCO dataset, did not reach FPS speeds 

above 33.5 [18], which shows that if the accuracy of the program could be improved, it is possible that 

this method could be used for a real-time implementation in a machine. The increased speed relative 

to the original study is likely due to the slightly higher processing power of the graphics card used for 

this study and lower image resolution. While this card has more processing power than most current 

embedded hardware options, some high-end embedded systems do have the processing power 

available to achieve these results. This hardware continues to become cheaper and more accessible 

as machine learning applications become more common and would be a realistic inclusion in a grapple 

system if cost benefits from reducing operator load could be achieved. 

7.4 LIGHTING 
Lighting may also have contributed to the low general accuracy. Most machine vision applications are 

in consistent lighting, typically indoor settings, or settings where the machine can illuminate the scene 

to a consistent brightness. Although most humans can discern that an object in two different lightings 

is the same object, a computer vision model does not understand this context. While all efforts were 

made to control for this and use consistently lit logs, the difference in time during the footage will 

change the intensity of light, shadow angles and colour between training images. Inference 12 in figure 

16, from the D.C. dataset contains an example where the shadow from the grapple carriage is cast on 

the logs to be grappled, and results in the logs not being detected.  

For the Rayonier dataset, the lighting was significantly dimmer than the DC, which had some benefit 

as it removed the presence of shadows. However, the reduced light may have contributed to fewer 

features being discernible in the annotated images. As the Rayonier data is from a smaller section of 

video footage, the lighting differences throughout the video are less significant than the lighting 

changes over the hours of operation for the D.C. grapple footage. 



  25 

 

7.5 DATASET SIZE 
Both datasets are smaller than would typically be used for a commercial application. Typically, 1000 

images per type of object is used to train a model, and these typically contain clearly defined and 

relatively uniform objects. Due to the time available for data collection and in particular annotation, 

the datasets were of a small size. For good general predictive ability, a large dataset with a large range 

of logs in different contexts improves is required to give consistent predictive accuracy across a range 

of conditions as would be encountered by a grapple camera. Especially in the case of the Rayonier 

dataset, the small dataset will make the overall accuracy lower than what could be expected with a 

large amount of data. The transfer learning implemented in the model reduces the need for large 

dataset size, but this model could still be improved by increasing the dataset size. 

7.6 GENERAL COMMENTS 
It is critical in interpreting these results that the inference data is contextualised. Because the 

inference data comes from the same dataset with relatively similar conditions for time of day, log age 

etc., the predictive accuracy on this data will be greater than inference on conditions from another 

operation. 

Logs on the cutover in general are difficult to discern. The criteria for log annotation included material 

that obscured the log in question. Because this material is likely to be present throughout the cutover, 

not only covering the logs, it is more difficult to discern a partially obscured log from its surroundings. 

Determining the effect of this would require annotating many different versions of the same dataset 

and comparing between them, with different inclusion criteria for annotations in each version. 

In addition, the grapple claw in the D.C. footage poses an interesting problem for identification of logs. 

As the end goal is to segment the entire log, the claw often obscures the top of the image, where a 

significant proportion of a target log may lie. In this case, the entirety of the log, which may still be 

accurately detected, will be represented by only part of the logs mass. An automated grapple system 

would need to choose an appropriate position on the log, and as this position will need to be a certain 

distance from the centre of mass for a successful drag, there will be issues determining a point at 

which to grapple the log.  

7.7 COMMERCIALISATION POTENTIAL 
In general, this method is not a suitable candidate for use as a commercial application. Although the 

speed of the inference meets the likely requirements for such an application, the predictive accuracy 

is several orders of magnitude lower than what would be required for a viable product. While 

improvements in the dataset size and quality as discussed above would improve predictive accuracy, 

it is unlikely that these improvements would be sufficient to reach 90+%. 

In addition, this study confined the conditions of yarding to certain lighting and weather. For a 

commercial product to have value, it would need to be generalisable across a range of conditions. This 

would require a large expansion of the dataset to include other conditions, so that the model can 

develop a broad understanding of possible contexts for the logs. 

7.8 FURTHER RESEARCH 
Further research in this domain could improve the understanding and full capability of this technology 

for use in grapple yarding. Investigating how increasing dataset size improves model performance 
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would be beneficial to understanding the requirements for a complete dataset. Training the dataset 

with other instance segmentation algorithms to compare across models would provide a greater 

understanding of this model’s performance and inference speed. In addition, determining whether an 

instance segmentation model not designed for real-time speed can identify logs at the necessary 

accuracy would provide a baseline for accuracy performance. Studies investigated in the literature 

review have determined logs can be identified at 93% precision, 82% recall [21], where speed was not 

a requirement, but this was achieved using multiple sensors. When performing this additional 

research, using images of the highest quality available would aid in improving model performance and 

mask quality.  

In addition to improving the quality of data, other sensors could also be coupled with RGB imagery to 

provide more information on the logs position in the frame. LiDAR, infra-red cameras or radar could 

all be integrated with this approach to provide more information on the scene. Although this would 

increase the computational requirements, this may improve the overall accuracy of the model. In 

addition, experimenting with differing colour bands for the image may also provide additional details 

for each log that are not evident with the RGB band.  

Another potential research avenue would be to constrain the detection problem to a very specific 

scenario first. If logs could be presented consistently, for example laid out as single logs in a consistent 

orientation, the performance of the model would be likely to improve. Other constraints could be 

making the lighting more consistent by using lighting from the grapple camera to provide a consistent 

lighting intensity. By exploring if these scenarios are feasible first, the dataset could then be extended 

to other lighting and log orientations in a gradual broadening of the machine capabilities.   
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8 CONCLUSION 

The ability of the algorithm trained on these datasets to detect and mask logs is insufficient for 

commercial application, reaching only 12.8% AP (0.5) on the D.C. dataset, and 21.6% AP (0.5)on the 

Rayonier dataset. While this paper did not achieve the necessary performance in detecting logs to 

apply the technique in a commercial setting, it does identify issues with working with machine vision 

in the forestry domain. It highlights the need for high-quality images due to the relative similarity of 

logs and their surrounding environment. High quality imagery provides more features to the algorithm 

to discern between logs and their surroundings. 

While this technique may be inadequate for the task, the issues encountered provide guidance for a 

scene where logs could be identified. As logs are similar to their surrounding environment, changing 

either the log or the environment may prove beneficial if it makes logs more distinguishable. Placing 

a marker or feature on logs, such as a clearly visible paint, may make them identifiable in the cutover. 

Other options that could be explored would be alternate lighting, such as lighting the scene at night 

using floodlights, or alternate sensors such as LiDAR or infra-red to provide more information to a 

detection algorithm, and more consistent features in the imagery. 

The speed performance of the models, 50.2FPS on the D.C. data and the 31.5FPS on the Rayonier data, 

shows that these techniques could be used in a commercial setting. Although the model on its own 

would not be sufficient, the speed of this technique is such that with improved accuracy, such as 

possible with additional sensors or constraining or changing the environment, it may form part of a 

solution. The excess speed performance of this model also indicates that a more computationally 

expensive method, with higher accuracy, may be used and still perform at an adequate speed. 

In summary, other techniques need to be explored beyond direct application of YOLACT for this task. 

The cutover is a complex environment, and the wide variety of positions and contexts a log may exist 

in requires that machine learning applications in this domain will require large datasets for adequate 

performance in a range of harvesting settings. 
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