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Abstract 
 
It is estimated that small-scale forests will contribute up to 40% of the nation’s wood supply over the 
next decade therefore it is important that accurate stand characteristics are known. The purpose of 
this dissertation was to see if plot stand variables for small-scale forests such as mean top height, 
volume, basal area, and stocking could be related to light detection and ranging (LiDAR) metrics 
from publicly available LiDAR. The focus area for my research was the Gisborne region as the LiDAR 
had just recently become available for free and plot data for small-scale forests could easily be 
obtained from forestry companies. There is little known about the yield of the small-scale forests in 
Gisborne as owners typically indicate the cost of an inventory crew is not worth the information. 
 
Data from three different forestry companies were used in this research giving a total of 1836 
sample plots. A large number of plots meant a wide range of plots from across the region were used 
to train the models. Multiple linear regression (MLR) models were used to describe the relationship 
between stand variables and LiDAR metrics as they provided accurate results for a similar study 
completed in the Wairarapa region of the North Island. LiDAR data was processed through the 
LAStools programme where 34 different metrics were extracted for model building. The regression 
models were built using the RStudio programme and the model with the highest R2 and lowest root 
mean square error (RMSE) was selected. 
 
The original models including all data were found to be very inaccurate due to the outliers in the 
data skewing the results. The most accurate models were found when there were no restrictions 
placed on the number of variables included in the model. This did however highlight a limitation of 
multiple linear regression (MLR) models which was the risk of collinearity error. All four models had 
a significant number of collinear variables. Therefore, a limit of seven variables was placed for the 
final set of models. The models for MTH, basal area, volume and stocking had R2 values of 0.42, 0.17, 
0.21 and 0.07 as well as RMSE values of 7.5%, 17%, 22% and 22% respectively. The MTH, basal area 
and volume models could be used pragmatically in the Gisborne region and provide ballpark 
estimations for small-scale forest owners about their yield. However, reliable accuracy in the models 
was not achieved. The stocking model had no relationship between LiDAR metrics and stems/ha due 
to the lack of explanatory variables, therefore, the model should not be applied.  
 
Company data was then looked at separately to check accuracy. Company A had the most accurate 
models with R2 values of 0.72, 0.63, 0.73 and 0.39 as well as RMSE of 9.7%, 17%, 19% and 22% for 
MTH, basal area, volume, and stocking respectively. The volume, MTH and basal area models had 
similar accuracy to the research conducted in the Wairarapa region. Company B had similar RMSE 
values but much lower R2 values and Company C had significantly less accurate models than both 
companies which provided an explanation as to why the combined data models were not as 
accurate as expected. The accurate models from Company A could be attributed to the smaller 
sample size which were all measured within two months and most likely by the same crew which 
provides consistency. A large dataset is not required for accurate models, rather it can be a 
drawback as there is a greater potential for inconsistency between inventory crews resulting in 
inaccurate models. By splitting the company data, the point of quality input data will return quality 
results is evident.  
 
The large dataset provided many challenges when working with the data and created potential 
sources of error. This research shows the publicly available LiDAR data can be used to create models 
to estimate stand characteristics given the sample plot data use to train the model is accurate. In 
future, there should be a large emphasis placed on the quality, not quantity, of sample plot data. 
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1. Introduction 
 
The focus of my research will be on small-scale forests in the Gisborne region of New 
Zealand as small woodlots are now playing a major role in harvest volumes in New Zealand. 
Small woodlots are responsible for up to 15 million m3 of harvested logs annually which is 
slightly over 40% of the nation’s total radiata pine supply (MPI, 2016). However, there is 
limited knowledge and reliability around the inventory of these forests (Xu et al., 2019) as 
small-scale woodlots require a greater sampling intensity than large production forests, with 
owners arguing the cost is not worth the information (Goulding & Fritzsch, 2010).  
 
Having accurate forest description data for small-scale forests will be beneficial for many 
different entities (Bouvier et al., 2015). Forest owners will also have the option of 
collaborating with nearby forests to satisfy customers who require more logs than can be 
produced from a single forest. In unison, production forest owners will have an opportunity 
to supplement log supplies from nearby forests. Harvesting crews will be able to better plan 
for future work and have greater confidence in yields presented to customers. Mills and 
wharves will also be able to plan with greater detail on future supply (Manley et al., 2020). 
Surveying all the individual small-scale forest owners in Gisborne would be impractical and 
expensive, however, LiDAR provides a unique opportunity for efficient, accurate and low-
cost acquisition of forest description data. 
 
Currently, stand characteristics are measured by inventory crews which can be both 
expensive and inaccurate at times. Inventory crews play a key role in forest management, 
having accurate forest inventory allows for estate planning, planning for harvesting and 
sales, keeping the logging crew honest, asset value for accounting and avoiding unexpected 
surprises (Xu et al., 2018; Bell, 2016). The use of LiDAR to measure forest inventory is now 
an economically viable option as the availability is widespread and the cost to acquire data 
has dramatically decreased over recent times (Montaghi et al., 2013). In New Zealand, the 
Provincial Growth Fund (PGF) LiDAR elevation data capture project has resulted in large 
portions of the country being airborne laser scanned with the LiDAR point clouds now being 
made publicly available for free. Using LiDAR in conjunction with ground measurements not 
only increases the accuracy of the measurements (Holmgren, 2004) but also at least halves 
the number of ground plots required for the same accuracy as ground-based measurements 
alone (Melville et al., 2015). The purpose of my dissertation project is to determine whether 
LiDAR-derived metrics from the PGF LiDAR can be used to accurately determine stand 
characteristics such as volume, mean top height, stocking, and basal area for small-scale 
woodlots. 
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2. Review of Literature 
 
The use of LiDAR to collect data on forest canopy heights has been around since the 1990s 
(Næsset, 2004) and use for other measurements such as volume and biomass has been 
around since the early 2000s (Montaghi et al., 2013). LiDAR has been proven in many 
studies to provide the same, if not better, level of accuracy as ground plots when 
determining stand characteristics (van Leeuwen & Nieuwenhuis, 2010, Goerndt et al., 2011, 
Bouvier et al., 2015). LiDAR is now more accessible than ever thanks to programmes such as 
the PGF LiDAR elevation data capture project which covers the Gisborne region and its 
small-scale forests. Small-scale forestry has previously been unable to keep pace with 
LiDAR’s technological advancements (van Leeuwen & Nieuwenhuis, 2010). However, with 
free access to LiDAR data and collaboration with forest management companies in the 
Gisborne region, LiDAR models to determine stand characteristics are now a possibility.  
 

2.1 Acquiring Data 
 

Ground-based measurements are the first step in the process of developing a model, 
sample plots are clipped to the point cloud and used to train the LiDAR model. Accurate 
ground measurements are essential for a reliable LiDAR model to be developed (Bouvier et 
al., 2015). Ensuring the centre of the plot is correctly marked out is key, if the centre of the 
plot when measuring is not the same as the recorded one then this will cause an 
overlapping error, as shown below in Figure 1, between ground measurements and the 
LiDAR point cloud (White et al., 2013). Circular plots with a radius of 8 – 14 metres are 
recommended to minimise edge effects and co-registration error while maximising sampling 
efficiency and precision and accuracy of target and explanatory variables (Frazer et al., 
2011). The selected radius for a plot is determined by the size of the largest tree and desired 
degree of accuracy in measurements (White et al. 2013). The more plots available for 
training the LiDAR model the more accurate it will be, however, if the plot measurements 
themselves are inaccurate then the model will also be inaccurate (Næsset, 2004a).  
 
 
 
 
 
 
 
 

 

LiDAR can be obtained through various methods, the most common form used in forestry is 
Aerial Laser Scanning (ALS) which are LiDAR scanners attached to fixed-wing aircraft or 
helicopter platforms (White et al., 2013). ALS has dense sample patterns and a small 
footprint allowing for detailed recordings of the forest surface at a high area coverage rate 
(Sabol et al., 2016). Unmanned aerial vehicles (UAV) are a rapidly developing technology 
with flight range and payload capacity increasing making them a viable option for collecting 

Figure 1. An overlapping error of 3 metres. The overlap for the 100 m2 plot is 63% whereas the overlap for the 400 m2 plot is 82% 
(White et al., 2013). 
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LiDAR data. UAVs are a cheaper alternative to sourcing LiDAR when compared to ALS and 
provide flexible data acquisition as data can be collected more often (White et al., 2013). 
However, the Civil Aviation Authority (CAA) has regulations in place that state that UAVs can 
only be flown when in line of sight of the operator and during daylight hours despite the 
availability of onboard cameras for flying a UAV (Civil Aviation Authority, 2022). Professional 
UAV operators can apply for exemption from these regulations and with UAVs rapidly 
developing it is expected the regulations will be relaxed which will allow the adoption of 
UAVs into forest management (Dash et al., 2016). 
 

The area of small-scale forests in New Zealand varies with different sources. . In a study by 
Manley et al. 2020 where small-scale forests were mapped for several different regions in 
the North Island, it was found existing mapping from the National Exotic Forest Description 
(NEFD), Land Cover Database (LCDB) and Land Use and Carbon Analysis System (LUCAS) 
overestimated the net forest area by 8%, 17% and 27% respectively. LCDB and LUCAS were 
found to overestimate forested area due to basing on gross area rather than net area as 
well as misclassification of some forests. Identifying and mapping a forest stand was based 
on aerial imagery, NEFD, LCDB and LUCAS. Up to date, aerial imagery is key for accurate 
boundary mapping. 

2.2 LiDAR Models 
 

Collected data needs to be processed to obtain a model that relates the LiDAR metrics to 
the stand metrics of interest. The first decision to be made when determining what model 
will be used is the approach to estimation (Melville et al., 2015). The two approach types 
are area-based and tree-based. The area-based is a predictive model that is derived and 
links the LiDAR metrics to the desired stand characteristic from the measured sample plots 
(White et al., 2013). The purpose of the area-based approach is to create a model that can 
predict stand characteristics where measurements have not been taken. The area-based 
approach allows for the identification of within-stand variability which may not be well 
represented by typical ground measurement and with the whole stand being able to be 
measured this allows for flexibility in inventory reporting (White et al., 2013). The tree-
based approach is where individual trees are identified and their corresponding 
characteristics are predicted or measured from the LiDAR data (Hyyppä et al., 2012). The 
tree-based approach can provide additional information at a tree level for forest stands 
however a dense point cloud and simple tree and canopy structure are required for 
accuracy, therefore, a tree-based approach can quickly become problematic (Kaartinen et 
al. 2012). The area-based approach has been used in New Zealand before by the Ministry of 
the Environment for recording the national carbon inventory and it was found to have 
increased the precision of these recordings (Dash et al., 2016). The area-based approach is 
considered fully operational for forestry management applications and is therefore 
recommended over a tree-based approach (Næsset, 2011). 

Various models can be used in conjunction with the area-based approach, with different 
models best being able to express different stand characteristics. For area-based modelling 
three types of software are required to form a model (Sabol et al., 2016): 
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• Software to process and manipulate LiDAR data and generate LiDAR metrics. 
(LAStools) 

• Software to develop models to be applied to determine stand characteristics. 
(RStudio) 

• GIS software to project models over areas of interest, manipulate model output 
raster and incorporate existing stand information. (ArcGIS) 

The software programmes in brackets are available on university computers. Processing of 
the point cloud involves clipping the point cloud to the plots that will be used to train the 
sample from polygon shapefiles, normalising the heights for each stand in relation to each 
stands ground point, and extracting metrics for each stand (White et al., 2013). When 
extracting the metrics for each stand it is common practice to have a threshold for 
eliminating LiDAR measurements from the ground and low vegetation (Holmgren, 2004). 
The threshold varies depending on the forest and can range from 1 to 3 metres (Bouvier, 
2015; Montaghi, 2013; Goerndt 2011).  

Selecting an appropriate model is influenced by how the data is acquired, the quality of the 
data and tree species. A study in New Zealand by Watt et al. (2015) compared k-NN and 
multiple linear regression (MLR) models for predicting the site index of plantation radiata 
pine forests where it was found that MLR produced more accurate results and smaller RMSE 
in most trials. In contrast, a study by Fehrmann et al. (2008) found that k-NN models were 
slightly better than MLR models for predicting spruce and pine single tree biomass. A study 
from Aertsen et al. (2010) trialled 5 model types (parametric multiple linear regression 
(MLR); four non-parametric models including classification and regression tree (CART), 
generalised additive model (GAM), artificial neural networks (ANN) and boosted regression 
tree (BRT)) for estimating site index where it was found all non-parametric models except 
CART outperformed MLR for mixed pine and cedar Mediterranean mountain forests. No 
single model is best suited for predicting all stand characteristics (Xu et al. 2019). A benefit 
of using MLR models is that it is easy for users to understand as there is a clear relationship 
between stand characteristics and LiDAR metrics whereas for non-parametric modelling the 
model can be seen as a ‘black box’ to the user (White et al., 2013). MLR is recommended for 
estimating small-scale forest stand variables when comprehensive field data are lacking (Xu 
et al., 2018). 

2.3 Accuracy Achieved in LiDAR-Based Inventory 
 

The standard for current inventory crews in New Zealand is ± 10% of the true harvest 
volume (Bell, 2016), therefore, this can be used as a benchmark to determine if previous 
research on this topic was accurate. Accuracy for a LiDAR model can be determined from 
two measurements, root-mean-square-error (RMSE) and coefficient of determination (R2) 
(Sabol et al., 2016).  
 
In a study by Xu et al. 2018 it was found that, when using an MLR model for small-scale 
radiate pine forests, the R2 ranged from 0.73 for the basal area (BA) to 0.97 for mean top 
height (MTH). RMSE for BA was 9.47 m2/ha, 84.20 m3/ha for volume, 1.31 m for MTH and 
2.11 years for age. In a study by Holmgren et al. 2004, MLR was used to estimate tree 
heights for Norway spruce and Scots pine which produced an accuracy of 0.92 for R2 and 



Page 9 of 35 
 

0.59 m for RMSE which was an error of 3% of the mean tree height. The basal area was also 
modelled with an R2 value of 0.88 and an RMSE value of 2.7 m2/ha which was an error of 
10% of the average basal area. In a study from Næsset, 2004 for modelling Scots pine and 
Birch it was found to have an R2 of 0.83 for BA and 0.90 for volume. RMSE for BA was 
2.51m2/ha, which was 8.4% of the average BA, and 16.1 m3/ha for volume, which was 5.6% 
of the average volume. 
 
The accuracy of the LiDAR metrics recorded can be influenced by topography, silviculture 
history, soil type and tree species (Melville et al., 2015). A study by Saremi et al. (2014) 
found that for radiata pine stands topography and the aspect of stands affect the metrics 
recorded for height. In a study from Takahashi et al. (2005) on the accuracy of modelling 
mature Sugi trees, it was found that tree heights were accurately estimated 74% of the time 
for steep slopes, 86% for gentle slopes and 92% for relatively flat slopes and slopes with no 
gradient. The model was found to underestimate tree heights on gentle slopes due to a 
higher percentage of the first point returns therefore increasing the sampling of the 
treetops. In contrast, the model was found to overestimate tree heights on steep slopes due 
to trees leaning towards the slope, therefore, distorting readings. In a study by Bouvier et al. 
(2015), it was found that models for coniferous trees are more accurate than models for 
deciduous trees. R2 for predicting the basal area of coniferous trees was 0.67 whereas for 
deciduous trees it was found to be 0.52. A study from Montaghi et al (2013) found similar 
results when looking into individual tree detection with errors being greater for mixed-
species forests compared to coniferous forests. 
 
When combining ground-based measurements with LiDAR, the number of sample plots 
required halves for the same precision as field measurements alone (Melville et al., 2015). 
Melville et al. (2015) also found the relative efficiencies for inventory measurements at least 
double when using LiDAR models to aid estimations in comparison to field measurements 
alone. A study from Holmgren (2004) found that low-density point clouds can be used to 
produce models with similar accuracy to traditional field-based measurements.  
 

3. Objectives 
 
The objective of my dissertation will be to determine if publicly available LiDAR data can be 
used to develop accurate MLR models to predict stand characteristics. The stand 
characteristics that models will be developed for are MTH, basal area, volume, and stocking. 
The desired accuracy of the models is ±10% of the plotted value as this is what is expected 
of inventory crews and the purpose of these models is to complete the same job. Therefore, 
the same expected accuracy level should be set. It should be noted that the accuracy of 
these models is based on the inventory crew data which may not be 100% accurate. 
 
The number of LiDAR metrics (variables) used to determine volume, mean top height and 
stocking will be decided at a later stage throughout the research process.  
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4. Method  
 
The Gisborne region covers 838,580 ha of land, of which approximately 67,050 ha is 
classified as small-scale forests. Small-scale forests are defined as forests greater than 1 
hectare in size and less than 1000 hectares and the forest is not owned by a large corporate 
forestry company.  
 

4.1 Software  
 
The software programmes used for this project are ArcMap, LAStools and RStudio. ArcMap 
10.8.1 is used for mapping, linking spatial and stand information, and model building. 
LAStools is a suite of command line tools used to process LiDAR point clouds and extract 
relevant data. RStudio is an integrated development environment for R, a programming 
language for statistical computing and graphics. In this research, RStudio will be used to 
undertake multiple linear regression model building. 
 

4.2 Mapping 
 
Before LiDAR processing can begin all the mapping of small-scale forests in Gisborne has to 
be updated. Mapping has previously been done in 2017, however, more recent aerial 
images have been made available. Forests have that not been replanted since 2017 will be 
assumed to no longer be land in forestry and will be removed from the shapefile database. 
When mapping small-scale forests, the following guidelines from Manley et al, 2020 were 
applied:  

• The area had to be over 1 ha and greater than 30 m wide, but the 1 ha rule was 
relaxed when there were contiguous small blocks that added to over 1 ha  

• Gaps over 0.1 ha were excluded from the forest area polygons  
• All mapping on ArcGIS was done at a maximum scale of 1:4,000.  

This allows for consistent and accurate results and exclusions of smaller areas that could 
potentially affect accuracy. Young forest outline accuracy can be checked by importing the 
shapefile into google earth and comparing it to the previous year's aerial photographs from 
when the stand was a mature forest. 
 

4.3 Plot data 
 
Plot data was made available from three forestry companies in the Gisborne region, 
meaning 1836 plots were available to use in the research. The plot data was collected using 
consumer-grade GPS with dates of recordings ranging from 2017 through to 2021. The 
relevant plot data includes tree height, DBH, slope, coordinates of the centre, and area of 
the plot. The locations of sample plots are shown below in Figure 2.  
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Figure 2. Location of sample plots. 
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If plot data contained missing heights of trees the Petterson model will be used to 
determine the unknown heights (Petterson, 1955): 
 

𝐻𝑒𝑖𝑔ℎ𝑡 =  1.4 +  (𝑎 + 𝑏 / 𝐷)2.5 
 

Where a and b are coefficients estimated from the known heights and diameters of the 
trees in the plot and D is the diameter of the tree. From the plot data the MTH, basal area, 
volume and stocking for the stand can then be calculated using the following formula: 
 

𝑀𝑇𝐻 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑎𝑙𝑙𝑒𝑠𝑡 [100 × 𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒 (ℎ𝑎)] 𝑡𝑟𝑒𝑒𝑠  
 

𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 =  
Σ𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎

𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒 (ℎ𝑎)
 

 
𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 × (0.9 + 0.3 × 𝑀𝑇𝐻)  

 

𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑒𝑠

𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒 (ℎ𝑎)
 

 
The 2D plot area for shapefiles in ArcGIS can then be calculated using the equation: 
 

𝑃𝑙𝑜𝑡 𝑎𝑟𝑒𝑎 =  √
10000 ×  𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒 (ℎ𝑎)

𝜋 cos (
𝑆𝑙𝑜𝑝𝑒 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

180 )
 

 
Getting the 2D area for the plot minimises the risk of an overlapping error occurring. A 2d 
plot area is required as a sample plot on a slope will have a different area when looking 
directly down on it in the  2D ArcGIS map. The received data must then be formatted so all 
companies’ information is presented the same way and it can be appended to the shapefiles 
of the corresponding plot in ArcGIS by indexing each stand and joining the files.  
 

4.4 LiDAR data 
 
The LiDAR point cloud was formed from Aerial Surveys between 2018 and 2020. The point 
cloud has a density of 10.07 points/m2 and uses the New Zealand Transverse Mercator 
coordinate system. There are 5 classifications used for the points: unclassified, ground, low 
point, water, and high noise. 
 
The LiDAR point cloud will then be processed through LAStools using the code shown in the 
appendix. The LiDAR point cloud comes in tiles from the LINZ database with a size of 7000 
metres by 3000 metres. Firstly, the quality of the LiDAR data is to be checked through the 
lasinfo tool, this allows for information on the number of points in each classification, 
coordinate system used, and any issues with the data.  
 
Processing of the data can then begin through the tool lasnoise. Lasnoise reclassifies cells of 
size 4 m by 4 m by 2 m that contain 3 or fewer points into a low noise classification. This 
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allows for more effective processing and precision when further using the LiDAR data as the 
noise contamination has been removed. 
 
Next, the lastile tool is used to create new tiles of size 2000 by 2000 metres with a buffer of 
20 metres around the edge of the square. Reshaping the tiles and adding buffers eliminates 
the risk of edge effects along tile boundaries. This was a risk with the original tiles as some 
may have small gaps in between them which can cause issues if a forest polygon falls in that 
region. The buffers are flagged as withheld so they can be removed easily if not required in 
other processing stages. 
 
The lasheight tool is then used to normalise the height of the LiDAR. The points classified as 
ground points in the point cloud are given an elevation of zero to represent the ground and 
then all other point heights are recalculated in relation to the zeroed ground points. This 
tool helps when extracting the height intensity metrics.  
 
The tiles are then indexed using the lasindex tool to create an LAX file containing spatial 
indexing information on the tile. The LAX file is used to speed up access to relevant areas of 
the LAZ file whenever there is a spatial query. 
 
Plot metrics can then be extracted using the lascanopy tool. Firstly, all tiles are merged 
followed by the low and high noise classification points being dropped. The merged tile file 
can then be clipped to the boundaries of the test plots to get the point clouds of each plot. 
The metrics are then extracted for each plot, the canopy cover cut-off height is set at 3 
metres and the height cut-off is set at 2 metres. The metrics extracted are shown in Table 2 
below. 
 

Table 1. Metrics extracted from the lascanopy tool. 

Variable Code  Description 

cov Canopy cover 

dns Canopy density 

max Max height  

avg Average height  

qav Average square height  

std Standard deviation of heights  

ske Skewness of heights 

kur Kurtosis of heights 

p(50, 75, 90, 95, 99) Height percentiles 

int_(max, avg, qav, std, ske, kur, p) Intensities of metrics 

b(30, 50, 80, 90) Bicentiles  

c(00, 01, 02) Height count raster 

d(00, 01, 02) Height density raster 

 

4.5 Model Building 
 
The most suitable approach for model building in the Gisborne region is the area-based 
approach as this allows for predicting characteristics for areas where ground measurements 
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have not been recorded and have been previously used successfully for a similar project. An 
area-based approach is also suited as the LiDAR is around 10 pts per m2, which isn’t dense 
enough for delineating individual trees, and the co-registration error needs to be minimal 
for a tree-based approach. An MLR model will also be best suited for the small-scale forests 
in Gisborne as it is an easily understood model that has a small accuracy advantage over 
other models for radiata pine stands in New Zealand.  
 
The metrics for each stand are presented in an excel spreadsheet where they are then lined 
up with their corresponding stand metrics. The spreadsheet is then run through RStudio 
using the code shown in the appendix.  
 
Firstly, the ‘regsubsets’ tool is used to determine the best fitting variables given a maximum 
number of allowable variables. The regsubsets tool selects the combination of variables that 
give the smallest residual sum of squares (RSS) value for the given number of variables. To 
begin with, all variables will be considered. The regsubsets tool then displays the best fitting 
variables for models with 1 through to 34 variables.  
 
The models are then run through a model selection criterion, using the summary tool, 
where the best number of variables is given for a required statistical measurement. The 
statistical measurements are adjusted R2, Capability Potential (CP), and Bayesian 
Information Criterion (BIC). R2 and Residual Sum of Squares (RSS) are not included as they 
will always favour the model with the highest number of variables. 
  
The average cross-validation error is then computed as the model prediction error. CV 
errors can be predicted for all 1 through to 34 variable models with the which.min(cv.errors) 
tool then applied to show what number variable model has the smallest CV error. 
 
Knowing the best number of variables for the model is given criteria for adjusted R2, CP, 
BIC, and CV the most suited number of variables and what variables they are can be 
determined. The coefficients for each variable in the model can then be found. In a separate 
excel spreadsheet, the stand characteristic is lined up with the best-suited variables for the 
next stage of processing. If there is uncertainty around the best number of variables the 
next stage can be repeated for models with a different number of variables and the model 
with the lowest R2 and RMSE is the best-suited model. 
 
The validation set approach is used to determine the coefficients for the model. The data is 
firstly split into 70% training and 30% validation to help evaluate model performance. The 
model is then built from the training data and the R2 and RMSE errors are given. A summary 
of the model is then printed out to give the coefficients of the model.  
 
Once these steps have all been completed four equations expressing stand volume, MTH, 
stocking and basal area will be completed. If the accuracy of the respective models is not 
within ±10% of the true value restrictions on the model variables will be placed followed by 
splitting of data into age class bins and by companies to see how accuracy is affected. 
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5. Results 
 

5.1 Summary of Plot Data 
 
Table 2 below shows a summary of the characteristics of the sample plots. The 5th and 95th 
percentile values are shown instead of the range as there were some extreme values in the 
original data. A total of 1836 sample plots were included when training the model. Majority 
of the sample plots were recorded for pre-harvest inventory. 

 
Table 2. Summary of plot characteristics. 

Stand Variable Mean 5th Percentile 95th Percentile 

Plot size (ha) 0.05 0.03 0.06 

Slope (o) 22 7 37 

Age (years) 27 25 29 

MTH (m) 36.6 30.9 42.1 

Basal Area (m2/ha) 69.6 39.8 91.0 

Volume (m3/ha) 843 447 1132 

Stocking (stems/ha) 392 240 600 

 

5.2 Summary of LiDAR Data 
 
Table 3 below shows a summary of the data for the LiDAR metric outputs from the 
lascanopy tool. Not all metrics have been included in the summary table below as the 
general trend can be observed from one metric that belongs to a group e.g., height 
percentiles (p50, p75, p90, p95, p99). 
 

Table 3. Summary of LiDAR metric outputs. 

Variable Code  Mean 5th Percentile 95th Percentile 

cov 91 70 99 

dns 80 64 91 

max 40 31 46 

avg 26 18 32 

qav 730 392 1053 

std 6 3 10 

ske -1 -2 0 

kur 5 2 9 

p50 27 19 33 

int_max 3741 2160 6422 

b30 8 1 25 

c00 182 0 654 

d00 2 0 9 
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5.3 Original Models  
 
To begin with, all 1836 sample plots were included when building the models and no 
restrictions were placed on the variables included in the model. The accuracy of these 
models was then reviewed for the next step of improving the accuracy of the model. Many 
sets of models were run for each stand variable and the model with the highest R2 and 
lowest RMSE was selected. Variables are considered important if they have a significance 
level of 0.1  
 
Table 4 below shows the accuracy of the models and the number of significant variables out 
of the total. MTH had the most accurate model with the RMSE value of 7.3% being within 
the desired 10% accuracy. Basal Area, volume and stocking models had poor R2 values as 
well as high RMSE values making the models unusable. 
 

Table 4. Original model results. 

Characteristic R2 RMSE  RMSE (%) Significant Variables 

MTH 0.34 2.68 m 7.3 12/16 

Basal Area 0.18 49.7 m2/ha 70 12/14 

Volume 0.15 743 m3/ha 91 11/25 

Stocking 0.07 106 stems/ha 27 7/7 

 
The low R2 for the models shows a poor ability to predict results over the whole range of 
input data. In the MTH model, the input data ranged from 20.98m to 113.38m whereas in 
the predicted results the data ranged from 28.45m to 44.06m. The MTH, Basal area and 
volume models all contained insignificant variables with over half of the variables in the 
volume model being insignificant. All the variables included in the stocking model were 
considered significant. This is due to the lower number of variables included in the model. 
 
As all the original data was included in these models there were outliers for all stand 
characteristics. For example, in the volume data, one stand had a volume of 24,238 m3/ha. 
This is impossible in real life and can therefore be removed from the data used to train the 
model. Values like this may come because of an error when recording the data, some plots 
had an area of 0.01 hectares and 20 + trees recorded. Outliers can easily skew results and 
create inaccuracies as shown by the original results. For the next step of developing the 
models, the outliers were removed from the data used to train the models to see if the 
accuracy would improve.  
 

5.2 Removal of Outliers 
 
There were still no restrictions placed on the variables used in the equations when these 
models were built. Table 5 below shows the upper limits to the data included in the models. 
No lower limits were set as all data across the stand characteristics were considered to have 
no values too low to be included.  
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Table 5. Upper limits for removing outliers. 

Characteristic Maximum 

MTH 45.0 m 

Basal Area 110 m2/ha 

Volume 1500 m3/ha 

Stocking 650 stems/ha 

 
A maximum of 45m was set for MTH as the oldest sample plot was 37 years old and it is 
unlikely Radiata Pine would be taller. A maximum of 110 m3/ha was set for basal area and 
1500 m3/ha was set for volume as it is very unlikely for a production forest to be much 
greater. A maximum of 650 stems/ha was set for stocking as the youngest sample plot was 
20 years old so it was likely that it had been through at least one stage of thinning. 
 
Table 6 below shows the accuracy of the models and the number of significant variables out 
of the total. MTH again had the most accurate model with an RMSE of 7.54% which is within 
the desired 10% accuracy.  
 

Table 6. Removed outlier model results. 

Characteristic R2 RMSE  RMSE (%) Significant Variables 

MTH 0.45 2.76 m 7.5 16/19 

Basal Area 0.20 12.7 m2/ha 18 16/22 

Volume 0.24 171 m3/ha 20 12/18 

Stocking 0.09 92 stems/ha 23 15/19 

 
For MTH, R2  increased by 0.1039 and the RMSE increased by 0.4m. The number of variables 
included in the model increased by 3 however the number of insignificant variables 
decreased by 1. For Basal area R2  increased by 0.0181 and the RMSE significantly decreased 
by 36.9m2/ha. The number of variables included in the model increased by 8 and the 
number of insignificant variables remained the same. For volume, R2  increased by 0.0884 
and the RMSE significantly decreased by 572.2m2/ha. The number of variables in the model 
decreased by 7 and the number of insignificant variables decreased by 8. For stocking, R2  
increased by 0.0216 and the RMSE decreased by 14 stems/ha. The number of variables in 
the model increased by 12 and the number of insignificant variables increased by 4. 
 
The accuracy for the basal area, volume and stocking models were still not within the 
desired accuracy of 10%. A poor R2 value for all models again reflects their inability to 
predict values over the full range of input data. The number of insignificant variables was 
still relatively high for all models. Therefore, for the next step of developing the model the 
insignificant variables were removed from the models to see how that would increase 
accuracy.  
 

5.3 Removal of Insignificant Variables  
 
Table 7 below shows the accuracy of the models and the number of significant variables out 
of the total. MTH again was the most accurate model and still the only model within the 
desired accuracy of 10% 
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Table 7. Removed insignificant variable model results. 

Characteristic R2 RMSE  RMSE (%) Significant Variables 

MTH 0.44 2.75 m 6.7 14/16 

Basal Area 0.17 12.9 m2/ha 20 12/16 

Volume 0.22 175 m3/ha 23 10/12 

Stocking 0.07 94 stems/ha 24 12/15 

 
For MTH the R2 decreased by 0.0028, the RMSE decreased by 0.01m and the model 
contained 2 insignificant variables. For basal area the R2 decreased by 0.0279 the RMSE 
increased by 0.2 m2/ha and the model contained 4 insignificant variables. For volume the R2 

decreased by 0.0140 the RMSE increased by 4 m3/ha and the model contained 3 
insignificant variables. For stocking the R2 decreased by 0.0138, the RMSE decreased by 
0.01m and the model contained 3 insignificant variables. 
 
All the models had a decrease in accuracy because of their insignificant variables being 
removed. Interestingly, all the models still contained insignificant variables. Further models 
were run where the insignificant variables from these models were removed, and the same 
trend of decreasing accuracy and more insignificant variables occurred.  
 
The high number of variables included in the models developed leaves them at risk to 
collinearity error. The number of collinear variables for each characteristic from the models 
above is shown below in Table 8.  
 

Table 8. Collinear variables in the models. 

Characteristic Number of Collinear Variables 

MTH 8 

Basal Area 11 

Volume 10 

Stocking 10 

 
Table 8 shows the model's vulnerability to collinearity error with the MTH model having the 
lowest number of collinear variables at 8. To minimise the risk of collinearity error a 
maximum variable limit was placed on the models for the next step of development. By 
running test models it was found when the models contain seven explanatory variables the 
increase in accuracy from fewer variable models was satisfactory and the risk of collinearity 
error was low. Therefore, the models with seven variables were used as the final models for 
estimating stand variables.  
 

5.4 Final models 
 
The final models produced with all the combined companies' data were these models. To 
further investigate the accuracy of the models the data needs to be split up. This section 
covers each model separately.  
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5.4.1 Mean Top Height 
 
 
The R2 for the model was 0.42 and the RMSE was 2.76m which was 7.5% of the average. All 
variables in the model had a significance level of 0. Figure 3 below shows the plotted MTH 
from the sample plots against the predicted MTH from the model. A relatively accurate 
model was expected due to MTH’s direct relationship with some LiDAR metrics. 

The equation for the MTH model was: 
 

𝑀𝑇𝐻 = 34.17 + 0.02𝑞𝑎𝑣 − 0.24𝑘𝑢𝑟 − 0.54𝑝50 + 0.06𝑏80 + 0.18𝑑00 − 0.01𝑖𝑛𝑡_ max + 0.09𝑖𝑛𝑡_𝑘𝑢𝑟 

 

5.4.2  Basal Area 

 
The R2 for the model was 0.17 and the RMSE was 12.6 m2/ha which was 17% of the average. 
Six variables in the model had a significance level of 0 and one variable having a significance 
level of 0.001. Figure 4 below shows the plotted basal area from the sample plots against 
the predicted basal area from the model. The poor R2 reflects the model's inability to 
predict the full range of results from the plotted data. A plot which has a basal area of 40 
m2/ha is predicted to have 60 m2/ha and a plot with 90 m2/ha is predicted to have 70 
m2/ha. This is not a desirable outcome for the model and is therefore unusable.  
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Figure 3.Final MLR model for MTH. 
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The equation for basal area was:  
 

𝐵𝐴 =  −3.14 + 0.02𝑞𝑎𝑣 − 1.04𝑠𝑡𝑑 + 0.65𝑏30 + 0.54𝑑02 − 0.01𝑖𝑛𝑡_ max − 0.04 𝑖𝑛𝑡_𝑝50 − 0.01𝑖𝑛𝑡_𝑝90 
 

5.4.3 Volume 
 
The R2 for the model was 0.21 and the RMSE was 172 m3/ha which was 22% of the average. 
All variables in the model had a significance level of 0. Figure 5 below shows the plotted 
volume from the sample plots against the predicted volume from the model. Again, the 
poor R2 reflects the model's inability to predict the full range of results from the plotted 
data. A plot which has a basal area of 400 m3/ha is predicted to have 700 m3/ha and a plot 
with 1200 m3/ha is predicted to have 850 m3/ha. This is not a desirable outcome for the 
model and is therefore unusable.  
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Figure 4. Final MLR model for basal area. 

Figure 5. Final MLR model for volume. 
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The equation for volume was: 
 

𝑉 = 513.54 + 0.89𝑞𝑎𝑣 − 34.16𝑝50 + 5.91𝑑00 − 0.03𝑖𝑛𝑡_𝑚𝑎𝑥 + 0.53𝑖𝑛𝑡_𝑝50 − 0.25𝑖𝑛𝑡_𝑝75 + 6.21𝑑𝑛𝑠 
 

5.4.4 Stocking  
 
The R2 for the model was 0.0701 and the RMSE was 91 stems/ha which was 22% of the 
average. Five of the variables had a significance level of 0 with the other two variables 
having a significance level of 0.001. Figure 6 below shows the plotted stocking from the 
sample plots against the predicted stocking from the model. Again, the poor R2 reflects the 
model's inability to predict the full range of results from the plotted data. A plot with 200 
stems/ha is predicted to have 350 stems/ha and a plot with 600 stems/ha is predicted to 
have 400 stems/ha. This shows there is no relationship between stocking and LiDAR metrics. 

 
The equation for stocking was: 
 

𝑆 = 262.12 + 6.52𝑘𝑢𝑟 − 14.42𝑝75 + 28.65𝑝90 − 15.52𝑝99 − 2.77𝑑02 − 0.08𝑖𝑛𝑡_𝑠𝑡𝑑 + 4.94𝑑𝑛𝑠 
 

5.3 Splitting of Data 
 
The desired level of accuracy had been achieved through the final MTH model where the 
RMSE error reached 7.5% of the average which was within the desired 10% accuracy 
threshold. However, as the R2 value for the model was 0.42, this resulted in a poor spread of 
predicted MTH’s. The range of plotted MTH’s was 20.98m to 36.14m and the final model 
had a range from 29.85m to 44.66m which means the model is unsuitable as it fails to 
predict MTH’s for the whole range of input data. The volume, basal area and stocking 
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Figure 6. Final MLR model for stocking. 
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models did not meet the desired accuracy threshold of 10% therefore all the models are 
considered unsuitable.  
 
Originally, the plan was to further break down the data by age if the models were unsuitable 
to see if that would increase accuracy. However, looking at the age class distribution below 
in Table 9, 89% of the sample plots were planted within the space of three years (1996, 
1997, 1998). This meant breaking the plots down by age class was no longer suitable 
therefore it was decided that the plots would be broken by the three companies that 
provided the plot data. 

Table 9. Year of sample plot planting. 

Year Planted Plots 

1985 4 

1989 12 

1990 3 

1991 3 

1992 51 

1993 40 

1994 54 

1995 558 

1996 838 

1997 271 

1998 12 

1999 11 

2000 7 

2001 7 

2002 1 

 
Company A had 47 sample plots planted from 1989 to 2002, Company B had 903 sample 
plots planted from 1985 to 1997 and Company C had 882 plots planted from 1989 to 2000.  
The results from the individual company models are shown below in Table 10. A significant 
increase in the accuracy of models was achieved for Companies A and B whereas Company 
C had poor performing models. This highlights an issue with the combined company data 
models as the data from Company C brings down the accuracy of those models. By splitting 
the companies data, there is more consistency around the plot data used as it is likely 
collected in the same manner and potentially by the same inventory crew. The accuracy 
achieved from company A was likely achieved because of a smaller, quality data set used to 
train the model which again highlights an issue for the combined data models. A large 
dataset is not required for accurate models, rather it can be a drawback as there is a greater 
potential for inconsistency between inventory crews resulting in inaccurate models. The 
largest sample plot dataset came from Company B so this rules out simply having too much 
data as a reason for inaccurate models.  
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Table 10. Results of models from different companies. 

Model Company R2 RMSE (%) RMSE (unit) 

MTH A 0.72 9.7 3.83 m 

 B 0.70 5.1 1.86 m 

 C 0.23 8.1 3.01 m 

Basal Area A 0.63 17 11.3 m2/ha 

 B 0.35 16 10.2 m2/ha 

 C 0.16 21 14.4 m2/ha 

Volume A 0.73 19 154 m3/ha 

 B 0.37 20 145 m3/ha 

 C 0.19 23 190 m3/ha 

Stocking A 0.39 22 65 stems/ha 

 B 0.08 20 77 stems/ha 

 C 0.12 23 100 stems/ha 

 
The only models that could be considered as within the desired accuracy are the MTH 
models from Company A and B. The RMSE is less than 10% and the R2 values mean the 
model can predict over a good range of the input data. Company C’s MTH model did have 
an RMSE of less than 10% however the low R2 shows a poor ability to predict over a full 
range of input data.  
 
Company B had the lower RMSE values for all models except stocking where Company A 
had the lowest. Company A had significantly higher R2 values for all the models and is 
therefore considered to have the most accurate models of all companies. The combination 
of R2 and RMSE on accuracy is highlighted in Figures 7,8 and 9 below which compare the 
MTH, basal area and volume models for Company A and B. 
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6. Discussion 
 
The large data set used in this research provided both benefits and challenges when 
building the models. The desired accuracy of 10% was nowhere close to being achieved for 
volume, basal area, and stocking models. Research completed on this topic usually involves 
smaller datasets where one crew measures all the plots and higher quality LiDAR data is 
used. The desired accuracy of 10% was optimistic for this research. However, it was set as 
this is the expected standard of inventory crews and the objective of these models was to 
be as accurate as them. 

Figure 8. Comparison of company basal area models. 
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Figure 9. Comparison of company volume model. 
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The original models for basal area, volume and stocking with all data included had large 
RMSE errors of 70%, 91% and 27% respectively. The large RMSE values for basal area and 
volume can be attributed to the extreme outliers in the data. The low RMSE of 7.3% for 
MTH was expected due to previous research having errors as low as 3% (Holgrem et al., 
2004). This is typically due to the direct relationship with height percentile variables 
(Næsset, 2004) such as p90. The original model developed included three height 
percentiles. All models had poor R2 values of 0.34, 0.18, 0.15 and 0.07 respectively meaning 
their ability to predict values over the whole range of input data was poor therefore making 
the models even less useable. The poor R2 values could be attributed to the poor 
relationships for single variables, no single variable had an R2 value greater than 0.3. The 
large disconnect between the accuracy of the original models and the desired accuracy can 
mostly be attributed to the inclusion of outliers and therefore the results from these models 
can be ignored. 
 
The accuracy of the models with different restrictions is shown in Table 11 below. As 
expected, the removal of outliers led to an increase in accuracy for all models with 
increasing R2 values and decreasing RMSE. The unlimited variable models were found to 
contain insignificant variables; therefore, they were removed in the next step of the model 
building. This step reduced the model's risk of overfitting as the unlimited variable models 
contained many variables. Accuracy was slightly decreased for all models, and it was found 
the risk of collinearity error was still high. This highlights a limitation to using MLR models as 
they are susceptible to this error (Aertsen et al. 2010).  A seven-variable limit was set to 
reduce the likelihood of this error and provide the final models for all the companies data. 
The accuracy of these models was relatively close to the best accuracies achieved in 
previous iterations. The final models achieved the lowest RMSE in the basal area and 
stocking models. 

Table 11. Results from models including all companies' data. 

Model Step R2 RMSE (%) RMSE (unit) 

MTH Original 0.34 7.3 2.68 m 

 Removed Outliers 0.45 7.5 2.76 m 

 Significant 0.44 6.7 2.75 m 

 Final 0.42 7.5 2.77 m 

Basal Area Original 0.18 70 49.7 m3/ha 

 Removed Outliers 0.20 18 12.7 m3/ha 

 Significant 0.17 20 12.9 m3/ha 

 Final 0.17 17 12.5 m3/ha 

Volume Original 0.15 91 743 m2/ha 

 Removed Outliers 0.24 20 171 m2/ha 

 Significant 0.22 23 175 m2/ha 

 Final 0.21 22 172 m2/ha 

Stocking Original 0.07 27 106 stems/ha 
 Removed Outliers 0.09 23 92 stems/ha 
 Significant 0.07 24 94 stems/ha 
 Final 0.07 22 91 stems/ha 
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The desired accuracy was achieved for the MTH model and could be applied pragmatically 
throughout the Gisborne region. The basal area and volume models could be used to 
provide small-scale forest owners with a rough estimation for their stands and gain some 
knowledge on what to expect from a plotting crew. The stocking model provided no 
accurate results and should not be applied. As there is little known about the yields of small-
scale forests in the Gisborne area the MTH, basal area and volume models can provide 
ballpark figures for owners and forest managers to work off. 
 
From these results it can be taken that developing accurate MLR models for large regions is 
difficult and not up to the same quality that is expected from a typical plotting crew. 
Consistent, quality input data is the only way that accurate models can be developed. This 
was reflected in the increase in accuracy of the models once the outliers were removed. 
However, for these models to be more accurate a standard should be set on how and what 
to measure for each sample plot. Although the LiDAR data used in this study was not as high 
of quality as used in other research, it would not have as much of a detrimental effect on 
accuracy as seen in these models if the plot data used was entirely accurate.  
 
Once the data was split by companies there was a clear trend in the accuracy of the models 
produced. The R2 values for company A and the RMSE values for Companies A and B were 
like those found in a study from Xu et al. (2018), as shown in Table 12 below. The study from 
Xu et al. (2018) used a survey grade GPS to locate plot centres, measured more tree heights 
per plot and did not investigate MLR models for stocking. The substantial difference 
between the companies provided some insight as to why the original models were not as 
accurate as previous research. There was a clear relationship between LiDAR metrics and 
stand characteristics in Company A’s models unlike the models produced from the 
combined data. This was likely due to a smaller sample size and data for the plots being 
collected all within 2 months. 
 

Table 12. Comparison of Xu et al. (2018) study to company models. 

Model Type R2 RMSE (%) RMSE (unit) 

MTH Company A 0.72 9.7 3.83 m 

 Company B 0.70 5.1 1.86 m 

 Xu et al. (2018) 0.97 5.2 1.31 m 

Basal Area Company A 0.63 17 11.3 m2/ha 

 Company B 0.35 16 10.2 m2/ha 

 Xu et al. (2018) 0.73 19 9.4 m2/ha 

Volume Company A 0.73 19 154 m3/ha 

 Company B 0.37 20 145 m3/ha 

 Xu et al. (2018) 0.88 19 84 m3/ha 

 
A small number of quality sample plots can produce just results as accurate as a large 
dataset (Melville et al., 2015). This point is shown in Company A and B’s results, Company A 
had 47 sample plots whereas Company B had 903 sample plots. In the study by Xu et al. 
(2018) 112 sample plots were used to train the model. The company results show that given 
a quality set of input data, accurate models can be produced using publicly available LiDAR 
data. This is something small-scale woodlot owners should take note of. If a small-scale 
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woodlot owner gathered quality sample plots where the height of all trees was measured, 
then accurate and useable models can easily be produced for their forest. As fewer sample 
plots are required to create an accurate model to predict stand characteristics, it would 
likely cost the owner less to create accurate models for their small-scale woodlot. The split 
of the data by companies shows that one model for all small-scale forests in Gisborne is not 
practical.  
 
The stocking model was the poorest performing model out of all the stand characteristics, 
this was likely due to a lack of explanatory LiDAR metrics and the area-based approach used 
to develop the models. A tree-based approach would likely result in more accurate models 
for predicting stocking (Hyyppä et al., 2012) however a dense point cloud and a consistent 
canopy cover are required which would be an issue in this case. 
 

6.1 Sources of Error 
 
Given the large data set and mix of companies, there were many areas where errors could 
arise causing inaccuracy in results. Errors in the sample plot data could have come from 
incorrect plot measurements and differing dates between measuring plots and LiDAR 
collection. Errors in the processing of the data could have come from the equations used to 
estimate stand characteristics and misalignment of plot data 
 

6.1.1 Plot measurements  
 
The desired accuracy of 10% for the models was selected as this is the expected accuracy of 
plotting crews in New Zealand (Bell, 2016) however if there are errors of +/- 10% of the true 
value in the sample plot data, this can cause issues when creating the MLR models. For the 
models to be accurate the input data must be very accurate (Bouvier et al., 2015), and 
errors from the plotting data will be compounded and create errors in the MLR models. 
Having data from three different companies also meant three different data collection 
crews/ methods further creating variation in the data.  
 

6.1.2 GPS Receiver 
 
Consumer-grade GPS’s were used by the crews when collecting plot data which means the 
position they recorded as the plot centre may be different from the position they were 
really in. This is due to the forest canopy distorting signal (Tomaštík, Jr. et al 2017) causing 
positioning errors of up to 10.2 metres (Anders, 2018). Incorrect positioning can cause 
overlapping errors where the measured plots and the LiDAR data are not measuring all the 
same trees. 
 

6.1.3 Time Difference 
 
The sample plots were measured from 2017 through to 2021 and the LiDAR data was 
collected from 2019 to 2020. This means that there was a potential for a 3-year gap 
between a plot being measured and the LiDAR being scanned over the same plot area. The 
time difference will mean the plot characteristics have changed and they will no longer be 
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the same as what the LiDAR is measuring. Therefore, the data being used to train the model 
from that plot is inaccurate leading to inaccurate results. 
 

6.1.4 Equations Used 
 
Plot data from the companies consisted of the DBH of all trees and the height of some. This 
meant a height-diameter relationship equation had to be used to determine the remaining 
height of the other trees. While there is a strong relationship between the height and 
diameter of trees it is not completely accurate. The predicted heights were then used to 
predict the MTH of the stand as well as the volume. By using equations to predict the stand 
metrics the resultant value may be slightly different to the true value further leading to 
potentially inaccurate results. 
 

 

6.2 Future Research  
 
If this research was to be continued in future a greater focus on the quality of the input data 
should be focused to eliminate the sources of error outlined above. It is almost impossible 
for a plotting crew to be 100% accurate when measuring plots however if the same crew 
measures all the plots used to train the model then there is consistency in the 
measurements and if there is a slight error made when measuring it would be across all 
plots and not some. A greater emphasis should also be placed on collecting heights for more 
trees as the more tree heights recorded the more accurate the height estimates will be for 
other trees. Having a large data set made it hard to comb through all the plot data and look 
for errors in each plot, with other steps such as variable limits and 70/30 training and 
validation split, a smaller sample set could be used to train the model where the quality can 
be better monitored. Ideally, the plots should be measured at the same time the LiDAR is 
scanned, this can be an issue for large-scale areas of study like in this report. However, 
there could be more of an attempt to line up measurement dates to avoid large periods 
between collection dates. 
 

7. Conclusion 
 
This study showed that LiDAR-derived metrics can produce accurate models for MTH, 
reasonable models for basal area and volume, and low accuracy models for stocking using 
publicly available LiDAR data. The desired accuracy level of 10% was best suited for the MTH 
models given the direct relationship of the height percentile metrics. However, it was 
optimistic for the basal area, volume and stocking models given the lack of good 
explanatory metrics and accuracy of previous research. A limitation to MLR models was 
shown with the most accurate models being achieved with unlimited variables included but 
this came with a risk of overfitting the model and collinearity error. 
 
The combined dataset provided challenges for creating accurate models given the variations 
between plotting crews and dates for the sample plots. Splitting the data by companies 
showed that an increase in accuracy can be achieved when the sample plots are consistent. 
Companies A and B had similar RMSE values for all their models however Company A 
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achieved much higher R2 values for their models. This can be attributed to the difference in 
samples used with company A having 47 sample plots whereas company B had 903 sample 
plots. The RMSE values from the combined data models were like those found in the 
individual company models however the R2 values were much lower. This created a 
limitation to the application of the models as they had a poor ability to predict results over 
the full range of input data.  
 
The results show that there is potential for using MLR models to estimate stand 
characteristics for small-scale forests. Creating one model for the whole Gisborne region 
was impractical. However, on a company and forest-by-forest basis accurate models can be 
developed to estimate stand characteristics. 
 
There are still many potential sources of error that can compound quickly when collecting 
data and creating these models, therefore, a greater emphasis should be placed on using 
accurate sample plots to train the model in future applications. The use of the free LiDAR 
data to create models to predict stand variables for small-scale forests should continually be 
investigated in future as there are benefits to those such as forest owners, contractors, 
trucking companies, sawmills, and ports.  
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Appendix 
 

LAStools Code  
 
:: Check the details of LiDAR data 

:: cd /d D:\LAStools\bin 

::lasinfo -i”E: \Gisborne\LiDAR\Point_cloud\*.laz ^ 

:: -cd ^ 

:: -merged ^ 

:: -odir quality -o lidar_info.txt 

 

:: Classify noise points as class 7- for each cell 4 by 4 by 2, 3 or 

fewer points are classified as noise. Note this will create many 

denoised .laz files :: and take up a lot of space  

 

lasnoise -i E:\Gisborne\LiDAR\Point_cloud\*.laz ^ 

         -step_xy 4 -step_z 2 -isolated 3^ 

  -ignore_class 2 ^ 

         -odir D:\denoise -o denoise.laz   

 

:: Create new tiles with buffers 

lastile -i D:\denoise\*.laz ^ 

        -o "tile.laz" -tile_size 1000 -buffer 20 -flag_as_withheld -faf 

^ 

        -odir D:\buffer -o buffer.laz 

 

::Normalise height of each point        

lasheight -i D:\buffer\*.laz^ 

   -replace_z ^ 

          -odir D:\height -o normal.laz ^ 

    

:: Add lndex to each .laz file           

lasindex -i D:\height\*.laz ^ 

   

    

:: Plot metrics in a csv 

lascanopy -i D:\height\*.laz -merged ^ 

          -drop_class 7 18^ 

          -lop 

E:\Gisborne\Data_received\Working\LiDAR\las\All_stands_fixed_overlap.sh

p ^ 

          -cover_cutoff 3.0 ^ 

          -cov -dns ^ 

          -height_cutoff 2.0 ^ 

          -c 2.0 5.0 10.0 50.0 ^ 

          -max -avg -qav -std -kur ^ 

          -p 50 75 95 99 ^ 

   -int_avg -int_qav -int_std -int_ske -int_kur ^ 

   -int_p 50 95 99 ^ 

          -b 30 50 80 90 ^ 

          -d 2.0 5.0 10.0 50.0 ^ 

   -odir D:\data -o plots.csv 
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RStudio Code 
 
"basal area example" 

#basal area = G 

 

library(leaps) 

library(tidyverse) 

library(caret) 

install.packages("caret") 

 

models <- regsubsets(G~., data = regression_test, nvmax = 5) # nvmmax 

is max numbver of variables you allow 

summary(models) # shows which variables to used based on allowed 

variables 

 

res.sum <- summary(models) 

data.frame( 

Adj.R2 = which.max(res.sum$adjr2), 

CP = which.min(res.sum$cp), 

BIC = which.min(res.sum$bic) 

) 

 

# spits out suitable number of variables from different (R2,CP, BIC) 

criteria 

 

get_model_formula <- function(id, object, outcome){ 

  models <- summary(object)$which[id,-1] 

  predictors <- names(which(models == TRUE)) 

  predictors <- paste(predictors, collapse = "+") 

  as.formula(paste0(outcome, "~", predictors)) 

} 

 

get_model_formula(N, models, "G") # shows best "N" variable model 

formula (i.e N = 3,4,5) 

 

get_cv_error <- function(model.formula, data){ 

  set.seed(1) 

  train.control <- trainControl(method = "cv", number = 5) 

  cv <- train(model.formula, data = data, method = "lm", 

              trControl = train.control) 

  cv$results$RMSE 

} 

model.ids <- 1:5 #number of variables 

cv.errors <-  map(model.ids, get_model_formula, models, "G") %>% 

map(get_cv_error, data = regression_test) %>%  

unlist() 

cv.errors 

 

# gives cv errors for models with differing amounts of variables (shows 

up to 5 variables in this case) 

 

which.min(cv.errors) # result shows the suitable amount of variables to 

use 

 

### create seperate excel sheet with only selected variables to then 

put into training/ validation 
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set.seed(123) 

training.samples <- regression_test$G %>% 

  createDataPartition(p = 0.7, list = FALSE) # 70% training, 30% 

validation 

train.data  <- regression_test[training.samples, ] 

test.data <- regression_test[-training.samples, ] 

model <- lm(G ~., data = train.data) 

predictions <- model %>% predict(test.data) 

data.frame( R2 = R2(predictions, test.data$G), 

            RMSE = RMSE(predictions, test.data$G), 

            MAE = MAE(predictions, test.data$G)) 

 

RMSE(predictions, test.data$G)/mean(test.data$G) 

 

# whatever model gives lowest RMSE is the most suitable model 

 

summary(model) 

 

#gives the coefficients for the model 

 
 
 


