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Abstract 
The use of Light Detection and Ranging (LiDAR) in forest inventory is increasing and is expected to 
continue rising. Combining unmanned aerial vehicles (UAV) with LiDAR can efficiently generate high-
resolution point cloud data. By analysing these point cloud data, metrics at different levels can be 
extracted to analyse variables of individual trees within forests. 
 
This report uses point cloud data generated by LiDAR, analyses it through a combination of algorithms, 
generates a normalized Canopy Height Model (nCHM), and completes individual tree detection and 
extraction. The report employs both automatic individual tree segmentation results and manually 
corrected results to generate models, comparing the prediction accuracy of models produced by 
these two segmentation methods. Linear models and Random Forest (RF) algorithms are generated 
in this report to predict individual tree height, diameter at breast height (DBH), and volume, with a 
total of 12 models being produced. 
 
Through comparison, traditional linear models exceeded machine learning models in prediction 
accuracy for all three variables. Among these, the prediction results for tree height, DBH, and volume 
explained 82.06%, 58.89%, and 71.91% of the dependent variable variance, with absolute means of 
2.97%, 5.55%, and 11.72% respectively. The results indicate that the prediction models for individual 
tree height and volume have a high degree of fit. Furthermore, the prediction results for individual 
tree height and volume suggest that models based on UAV LiDAR are capable of replacing formula-
based individual tree volume estimation. However, the relatively low accuracy of DBH prediction 
indicates that challenges remain in estimating this parameter. Future research should focus on 
improving DBH prediction accuracy and optimising automatic segmentation algorithms. 
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Introduction 
Light Detection and ranging (LiDAR) technology, as a form of remote sensing (RS), is becoming 
increasingly important in forest management and monitoring in New Zealand. LiDAR can be mounted 
on various platforms to meet different needs. Installing LiDAR on unmanned aerial vehicles (UAVs) for 
scanning and data acquisition offers more flexibility and lower costs, making it considered a suitable 
LiDAR platform for forest environments. Over the past decade, the utilization rate of LiDAR has 
significantly increased from 17% in 2013 to 93% in 2023, with usage expected to continue rising 
(Manning, 2023).  
 
UAV LiDAR evolved from Airborne Laser Scanning (ALS) and was first applied to tree measurements 
in 2010 (Anttoni et al, 2010). UAVs are divided into two types: rotary-wing and fixed-wing. Their 
applications in forestry include resource inventory, disease mapping, species classification, fire 
monitoring and impact assessment, quantifying spatial gaps, and estimating soil displacement after 
logging (Torresan et al, 2017). Compared to traditional RS platforms, UAV LiDAR platforms offer 
advantages in flexibility, speed, and cost-effectiveness (Dunford, 2009). Additionally, UAV LiDAR can 
collect reliable and dense 3D point data, enabling higher precision forest measurements (Cao et al., 
2019). 
 
New Zealand forestry commonly uses LiDAR technology for Area-Based Analysis (ABA) in forest 
inventory. ABA divides forests into fixed-size grids, analysing forest characteristics within each grid to 
calculate parameters such as average tree height, mean diameter at breast height, and average 
volume. ABA can accurately predict average height, basal area, mean volume, and biomass (Yu et al., 
2010). Mei et al. (2023) used point cloud percentage resampling tools to thin original point cloud 
density, proving that ABA's dependence on point density is relatively low, and higher point density 
cannot further improve ABA's variable prediction accuracy. 
 
ABA results primarily aim to provide averages or totals for all trees within a grid. As ABA divides forests 
into fixed-size grids, it cannot accurately reflect tree aggregation or sparse areas when these grids 
have spatial heterogeneity. Additionally, ABA cannot precisely analyse tree size, shape, and health 
conditions. These limitations lead to reduced accuracy in obtaining ecological and economic 
information, resulting in suboptimal management decisions. 
 
With the application of UAV LiDAR in forestry, ABA's inability to improve analysis accuracy through 
high-resolution point cloud data has gradually become a bottleneck in forest inventory. How to 
conduct more precise forest inventory using high-resolution point cloud data has become a new 
development trend, creating potential opportunities for Tree-Based Analysis (TBA). 
 
As UAVs can fly at a constant speed and height, they can obtain relatively high point cloud density. 
Moreover, the cost of obtaining high-density point cloud information via UAV is low, only requiring 
multiple charges and flights of the UAV. Torresan et al. (2020) compared the results of the itcLiDAR 
algorithm and li2012 algorithm in R, showing that the CHM-based itcLiDAR algorithm is more 
accurate for forests composed of conifers with distinct tops, consistent heights, and single layers 
compared to the point cloud-based li2012 algorithm. However, when facing two-layered dense 
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mixed forests, due to point density limitations (193 points/m²), individual tree crown segmentation 
using only UAV LiDAR data cannot achieve satisfactory results. Michael et al. (2024) studied the point 
cloud density required for accurate TBA, finding that RMSE for DBH and volume stabilizes when point 
cloud density exceeds 400 to 750 points per square meter. The high pulse density laser data required 
for TBA has been greatly improved with the development of LiDAR sensors and UAV technology (Yu 
et al, 2010). Chisholm et al. (2021) used under-canopy UAVs to estimate tree DBH, finding high 
correlation between UAV-estimated and manually measured DBH in forests with larger tree sizes. 
 
The exploration of Tree-Based Analysis (TBA) continues. While Area-Based Analysis (ABA) provides 
overall stand statistics, TBA can extract parameters for individual trees, allowing for more precise 
estimation of tree height, diameter, and volume (Hyyppä et al., 2012). The uncertainty in TBA 
estimation models is less dependent on plot size, allowing for calibration using individual trees and 
small plots (Dalponte). Shugart et al. (2015) suggest that TBA can track the growth conditions of 
individual trees, achieving continuous and high-frequency forest inventory. However, despite these 
advantages, TBA is inherently computation-intensive, and overcoming these complex calculations 
and achieving accurate tree segmentation are the main challenges in TBA development (Shugart et 
al., 2015). 
 
In recent years, with the development of various algorithms, the rich information in LiDAR data has 
been further exploited. These algorithms can effectively classify and filter vast amounts of data, greatly 
reducing analysis time and improving efficiency. They can extract various metrics from LiDAR point 
cloud data, such as crown height, canopy density, and vertical structure characteristics, and then 
associate these indicators with field-measured tree parameters. By establishing this association, 
predictive models can be developed to quickly and accurately estimate individual tree parameters 
over large areas. Michael et al. (2024) categorized these metrics usable for model construction and 
precise calculations into three types: point-based, region-based, and pixel-based, all of which can be 
obtained through R software packages. Among these, height metrics (describing the statistical 
distribution of z-values in the point cloud), canopy metrics (providing measures of canopy structure), 
intensity metrics (describing the intensity of each pulse return), and other metrics (such as differences 
between height percentiles) are considered to contribute significantly to model construction (Xu et 
al., 2019; Cao et al., 2019). 
 
Xu et al. (2019) compared four different model construction methods, where MLR and SUR are 
parametric models, while k-NN and Random Forest are non-parametric models. Results show that 
parametric and non-parametric models have little difference in volume estimation, both achieving 
relatively high coefficients of determination. MLR using LiDAR-derived indicators is considered the 
best modeling method for predicting stand variables in small-scale plantations in New Zealand. 
 
The objective of this study is to create two models combining UAV LiDAR-derived indicators with field 
measurements to assess their prediction accuracy for individual radiata pine trees in terms of height, 
DBH, and volume. These two models will be based on parametric and non-parametric approaches 
respectively. After model establishment, they will be applied to predict the height, DBH, and volume 
of individual pine trees and compared with ground measurements to observe their fit. Simultaneously, 
the fit of the two types of models will be compared to determine which is more suitable for tree-
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based estimation of height, DBH, and volume (TBA). Additionally, this study will observe which 
indicators play more important roles in model prediction. 

Methodology 

Study area description 

The study area is located in Rolleston (43°37'S, 172°21'E) on the South Island of New Zealand, with a 
forest area of approximately 8 ha. The experimental stand is a 16-year-old even-aged pure forest of 
radiata pine (Pinus radiata D. Don), with relatively flat terrain. Afforestation began in 2008, with radiata 
pine as the primary species. The study area includes three types of stockings: high density (2500 
stems/ha), medium density (1250 stems/ha), and low density (625 stems/ha). Based on these stockings, 
the forest is divided into 48 square plots. In this study, 300 trees from five low-density plots were 
selected as sample trees, with the geographical overview of these five plots shown in Figure 1. The 
reason for choosing low-density plots as the research subject is that they more closely resemble New 
Zealand's commercial forests, making the research results more practical and valuable for wider 
application. 

 
Figure 1. Geographic overview of study area and sample plots. 

 

Software Used 

The main software used in this project are CloudCompare, R, and ArcGIS Pro. CloudCompare is used 
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for LiDAR data visualization, ArcGIS Pro is used for adjusting and checking constructed polygons and 
coordinate points of sample trees, and R will be combined with other packages for processing and 
analyzing LiDAR data, constructing models, training models, and model validation and evaluation. 
The data analysis and statistical modeling process in this study is completed using R language (R Core 
Team, 2024), with RStudio (Posit team, 2024) used as the integrated development environment to 
improve work efficiency. 

LiDAR Data Collection 

LiDAR data was collected in July 2023, with point cloud data visualization through CloudCompare 
shown in Figure 2. The equipment used for collecting LiDAR data was a Dji M300 RTK with L1 LiDAR 
solution, flying at a height of 80m above ground level, with 80% overlap, capturing triple returns at a 
sampling rate of 160Hz. This ensures that the LiDAR data has a relatively high resolution and achieves 
a balance between data quality and data processing workload. The LiDAR data collection covered a 
total area of 24 hectares, comprising approximately 200 million points, with a point density of 828 
points/m² and a pulse density of 661.7 pulses/m². The preset coordinate system for the LiDAR data 
collection equipment was NZGD/New Zealand Transverse Mercator 2000. 

 

Figure 2. UAV LiDAR data visualisation results generated by cloudcompare 
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Collection of Dependent Variables 

Sample tree information was measured in July 2023. In addition to measuring tree height using a 
Vertex hypsometer and DBH using a diameter tape, visual observations of the sample trees were also 
conducted to describe any abnormal conditions. Recording tree abnormalities played a crucial role in 
model construction and validation, as abnormal trees would lead to data that lacks referential value. 
If these trees were included as training samples in model construction, it would significantly decrease 
the prediction accuracy of the model itself. On the other hand, the model's prediction accuracy for 
trees would be underestimated. After excluding dead trees and trees with damaged crowns, a total 
of 284 trees were used for model training. The tree conditions in the five plots are shown in Table 1. 
 

Table 1. Overview of the sample trees of each plot and the number of sample trees involved in 
model training 

  plot31 plot32 plot35 plot36 plot41 
Total number of trees 60 60 60 60 58 
Broken Top 5 0 2 3 3 
Dead Tree 0 0 0 0 1 
Trees used in model training 55 60 58 57 54 

sum 284 
  

The main reasons for measuring DBH and tree height, besides assessing tree growth conditions, 
include an important function: calculating tree volume. Currently, the widely used volume calculation 
formula is the method proposed by Kimberly & Beets (2007) for New Zealand radiata pine. The 
formula is as follows: 

𝑉𝑉 = ℎ ×  𝜋𝜋 × (
𝐷𝐷𝐷𝐷𝐷𝐷 

20
)2 × [𝑎𝑎 × (ℎ − 1.4)−𝑏𝑏 + 𝑐𝑐] 

Where V is the tree volume (m³), DBH is the diameter at breast height (mm), h is the tree height (m), 
a = 0.860, b = 0.972, c = 0.304. 
 
In this project, the tree height and DBH measured in the field, as well as the tree volume calculated 
using the above formula, are used as standard values. These are compared with the predicted values 
from the model to determine the prediction accuracy of the model. 
 

LiDAR Data Processing 

The processing of LiDAR data includes nine steps, from importing the original point cloud data to 
extracting individual tree metrics. The workflow is shown in Figure 3. In the flowchart, the point cloud 
data processing for the five plots is repetitive, so plot 32 is used as an example for illustration. 
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3. Generate Digital Terrain Model (DTM) 

4. Generate normalised Canopy 
Height Model (nCHM) 

  
  

 
 
 
 
 

 
 

 

1. Import raw LiDAR point cloud 
2. Pre-process point cloud: filter noise, delineate 

plot boundary, and classify ground points 

5. Perform individual tree crown delineation 6. Individual tree segmentation 7. Extract point clouds for individual trees 

8. Manually refine individual 
tree segmentation 

9. Extract metrics 

Figure 3. Flowchart for extracting individual 
tree metrics 
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Importing LAS Data and Extracting Target Plot Point Cloud Data  
Processing and analysis of LiDAR point cloud data require installing and loading the lidR package in 
the R environment. After data import, a series of preprocessing steps were performed. First, the 
clip_roi function was used to extract the point cloud data of the target sample plot. Torresan et al. 
(2020) pointed out that when extracting the target sample plot, the edge effect needs to be 
considered. The edge effect can lead to two situations: tree trunks inside the plot with crowns outside, 
or trunks outside with parts of the crown entering the plot. The former can result in incomplete 
individual tree crown data, affecting model accuracy; the latter may lead to non-target trees being 
erroneously included. To mitigate the edge effect, a buffer zone of about 2.5 meters outside the plot 
boundary was set when extracting point cloud data to ensure complete capture of point cloud 
information for all target trees within the plot. 
 
Preprocessing Point Cloud Data of the Target Area  
After extracting the target plot point cloud, data cleaning was performed. This included removing 
duplicate points and outliers to improve data quality and analysis efficiency. UAV LiDAR typically uses 
a reciprocating scan mode, which may produce overlapping areas during data stitching, leading to 
point duplication. Additionally, outliers or noise points may occur during data collection, possibly due 
to sensor errors or interference from non-target objects (such as flying birds). These redundant or 
abnormal data points may affect the accuracy of subsequent analyses. By applying the filter_duplicates 
and las_filter functions from the lidR package, duplicate points and outliers were removed, generating 
a more reliable and high-quality point cloud dataset. 
 
Ground Point Classification  
The LiDAR point cloud dataset is essentially composed of a large number of unanalyzed and 
unclassified three-dimensional coordinate points. To conduct effective terrain analysis and vegetation 
feature extraction, ground points need to be identified. The lidR package provides multiple ground 
point classification algorithms, including the Progressive Morphological Filter (PMF) and Cloth 
Simulation Filter (CSF). The PMF algorithm is generally more suitable for areas with less terrain 
variation, while the CSF algorithm performs better in complex and varied terrains. Given that the study 
area has relatively flat terrain, the PMF algorithm was used for ground point classification. After 
completing ground point classification, the classify_noise function from the lidR package, combined 
with the Isolated Voxel Filter (IVF) method, was used to identify and classify noise points in the point 
cloud data. A voxel size of 5 meters was set, and areas with fewer than 6 points in each voxel were 
identified as noise. The IVF algorithm can remove abnormal points caused by equipment errors or 
environmental factors, thereby improving the accuracy of subsequent analyses. 
 
Generating and Smoothing DTM  
After completing ground point classification, each point in the point cloud data was assigned a 
"Classification" attribute. According to the LAS format standard, ground points were given a 
classification value of 2, while non-ground points were assigned a value of 1. Based on this 
classification, a Digital Terrain Model (DTM) can be generated. The generation of DTM mainly relies 
on the Triangulated Irregular Network (TIN) algorithm, which connects irregularly distributed ground 
points into a triangular network, forming a terrain surface composed of multiple triangular planes. 
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After generating the original DTM, it needs to be smoothed using the focal function from the raster 
package to reduce potential noise. This process helps eliminate local minor fluctuations, making the 
DTM better reflect overall terrain features while reducing subtle errors that may be introduced by 
data collection or processing. 
 
Normalization  
After generating the smoothed DTM, the next crucial step is to normalize the elevation of the point 
cloud data. This process is implemented using the normalize_height function from the lidR package. 
The main purpose of elevation normalization is to convert the absolute height of all points to height 
relative to the ground, which is vital for subsequent vegetation analysis. This step eliminates the 
impact of terrain undulations on vegetation height measurements and allows direct comparison of 
vegetation heights under different terrain conditions. 
 
Generating CHM  
Following the elevation normalization of point cloud data, the next key step is to generate a rasterized 
Canopy Height Model (CHM). CHM provides a visual representation of the forest's three-dimensional 
structure, where each pixel value represents the maximum vegetation height at that location. After 
filtering out points with heights less than 0 to eliminate underground points and noise data, the 
rasterize_canopy function is used to convert point cloud data into raster format. During the 
rasterization process, null values may occur due to the discrete nature of LiDAR data, so the K-Nearest 
Neighbor Inverse Distance Weighting (knnidw) algorithm is used for interpolation filling. This method 
considers the values and distances of surrounding known points, providing smooth results that take 
local features into account. To further improve CHM quality, a 3x3 pixel moving window average filter 
is applied to reduce noise and produce a continuous and smooth surface. 
 
Individual Tree Detection  
After generating the CHM, the next step is to use the ForestTools package for individual tree detection. 
ForestTools uses the Variable Window Filter (VWF) algorithm for tree top detection. In this study, a 
linear function is used to dynamically adjust the size of the detection window. This approach is suitable 
for handling radiata pine stands that may have double/multi leader issues. By adjusting the window 
size, the algorithm can more accurately identify the tops of trees at different heights, reducing the 
likelihood of mistaking multiple tops of the same tree for different trees. Based on the tree heights 
measured in the ground measurement for each plot, minimum heights for individual tree extraction 
were set separately, meaning the algorithm would ignore potential treetops below this height, helping 
to filter out shrubs or young trees. The optimal results of individual tree detection for the five plots 
and the raster images are presented in Appendix 1, with a detection accuracy of 99.65%. 
 
Individual Tree Segmentation  
Crown segmentation uses the marker-controlled watershed segmentation (MCWS) algorithm, 
utilizing detected treetops as markers and combining CHM height information to delineate crown 
boundaries. This method can effectively handle complex crown structures and closely connected trees. 
After completing crown segmentation, the boundaries of each sample tree are generated as separate 
polygons, and point cloud data is extracted from the CHM for subsequent analysis. To evaluate and 
optimize the automatically generated individual tree segmentation results through the MCWS 
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algorithm, a method combining automatic segmentation with manual adjustment was adopted. After 
generating individual tree polygons through the MCWS algorithm, the shape file representing the 
polygon boundaries was imported into ArcGIS Pro, and the polygons were manually corrected using 
point cloud data visualization and normalized CHM. This step generated two separate sets of point 
cloud data for each tree: one based on automatic segmentation and another based on manually 
adjusted results. 
 
Metrics Generation and Screening  
After successfully extracting individual tree point cloud data, the next crucial step is to generate 
metrics describing the characteristics of each tree. These metrics will serve as the foundation for 
subsequent model construction and training. This study used the metrics_set3 function from the LidR 
package, which is a predefined comprehensive set of indicators capable of extracting rich tree 
structure information from point cloud data. Before using these metrics for model construction, pre-
screening is necessary. This step aims to improve data quality and ensure the validity and reliability of 
model inputs. According to Bennett's (2001) study, if a variable has more than 10% of data missing, it 
may lead to significant bias in statistical analysis results. Based on this principle, metrics with more 
than 10% of data being 0 or NA and metrics without discriminative ability (i.e., metrics with the same 
value for all trees) were removed. Through this pre-screening process, 16 metrics were eliminated, 
leaving 95 effective metrics. 
 
Model Construction 
In this study, a random seed was used to allocate 70% of the 284 valid sample trees for model training, 
with the remaining 30% used for testing the model's predictive ability. Using a random seed ensures 
model reproducibility and applies the same random results to different model constructions. RStudio 
itself has the capability to build linear regression models, while for Random Forest, the RandomForest 
package is required. 
This research used a fixed random seed (set.seed(123)) to randomly divide the 284 valid sample trees 
into a training set (70%) and a test set (30%) to ensure the reliability and reproducibility of the results. 
This method not only guarantees the reproducibility of the experiment but also allows for comparison 
between different models. For model construction, R's built-in lm function was used to build linear 
regression models, and the randomForest package was used to implement random forest models. 
Model evaluation used test set data, measuring model performance by calculating the coefficient of 
determination (R²), root mean square error (RMSE), and mean absolute error (MAE). Among these, R² 
represents the overall fit of the model, used to evaluate the model's explanatory power for test data. 
R² ranges from 0 to 1, where R² ≥ 0.70: Very strong correlation ; 0.50 ≤ R² < 0.70: Strong correlation ; 
0.30 ≤ R² < 0.50: Moderate correlation ; R² < 0.30: Weak correlation.  
The RMSE was calculated to quantify the model's prediction accuracy, and the MAE was used to 
evaluate the average magnitude of prediction errors. 
 
Height Model Prediction (SLR) 
Linear regression models include Single Linear Regression (SLR) and Multiple Linear Regression (MLR). 
The main difference between these two regression models is the number of independent variables 
(metrics) input. For tree height linear regression prediction models, using SLR can yield simpler and 
more accurate results. This is because some highly correlated indicators have a very strong linear 
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relationship with tree height. This strong correlation means that a single LiDAR height indicator is 
sufficient to accurately predict tree height. The metrics include many height-related metrics (such as 
maximum height or 99th percentile of height), and these metrics are highly correlated with each other, 
which would lead to multicollinearity problems in MLR models. Multicollinearity refers to the 
phenomenon where two or more independent variables are highly correlated, which can affect the 
stability and interpretability of the model. 
 
DBH and Volume Prediction Models (MLR) 
For DBH and volume, MLR can achieve better results because DBH and volume prediction models do 
not rely on a single type of metric, but need to assign weights to different types of metrics to seek 
more accurate prediction results. Among the 95 metrics, the impact of each metric on the target 
variable (DBH and volume) is unknown. Therefore, it is necessary to first construct a model containing 
95 metrics, and then use backward elimination to gradually remove the metrics with the lowest 
correlation to improve the model's interpretability and practicality while avoiding overfitting. 
Overfitting refers to the situation where a model achieves quite high fitting on training data but 
performs poorly in testing. This study mainly uses two indicators to judge the removed metrics: 
whether the p-value of the metric and the prediction target variable is greater than 0.05, and whether 
the variance inflation factor (VIF) value of the metric is greater than 5. If the p-value of a metric is 
greater than 0.05, it means that there is little correlation between this metric and the prediction target 
variable. If the VIF value of a metric is greater than 5, it indicates that this metric is highly correlated 
with other metrics in the model. After parameter tuning, MLR allows returning a table containing the 
metrics that affect the prediction target variable and their degree of influence, thereby obtaining a 
mathematical equation for predicting the dependent variable. 
 
Diagnosis and Validation of MLR Models 
After the MLR model is adjusted, it needs to be diagnosed. This study mainly diagnoses the model 
from two aspects. The first aspect is to observe whether there is a systematic relationship between 
adjacent residuals in the regression model by using the Durbin-Watson (DW) test with the dwtest 
function from the lmtest package. The DW statistic ranges from 0 to 4, where if DW is approximately 
2, it indicates no autocorrelation in the residuals; when DW is less than 2, it indicates positive 
autocorrelation; when DW is greater than 2, it indicates negative autocorrelation. The second aspect 
is to conduct a comprehensive diagnosis of the linear regression model's quality using the 
performance, see, and patchwork packages. The diagnosis contents include the fitting degree 
between the model's true values and predicted values, the magnitude of residuals, whether there is a 
trend in residuals, whether the distribution of residual values is within an acceptable range, the 
collinearity of independent variables, and whether the residuals follow a normal distribution. 
 
Machine Learning 
Random Forest (RF) as an advanced machine learning algorithm has shown significant advantages in 
handling complex non-linear relationships, especially when analyzing LiDAR data. This ensemble 
learning method, by constructing and synthesizing results from multiple decision trees, not only 
possesses powerful predictive capabilities but also can avoid overfitting problems. Compared to MLR 
models, RF can not only handle non-linear relationships but also doesn't require complex parameter 
tuning processes. In practical applications, the implementation of RF models is relatively simple and 
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can be achieved using the randomForest package in RStudio. 

Result 

Tree Height Prediction Model 

After constructing and comparing SLR models and RF models using height-related metrics and tree 
height, the prediction model accuracy for height is generally high (R² > 0.7), indicating that LiDAR 
data has significant advantages in tree height estimation. The comparison between predicted height 
and measured height for each model is shown in Figure 4. Through horizontal comparison of all 
results, it was found that in the SLR height prediction model based on automatically generated 
individual tree segmentation, the model constructed with maximum height (zmax) as the independent 
variable outperformed the model constructed with the 99th percentile of height (zq99) and the two 
RF models generated based on different segmentation results. Its coefficient of determination R² 
reached 0.82, while the root mean square error (RMSE) was the lowest at 0.76m. This means that the 
average prediction error of this model is about 0.76m, demonstrating satisfactory prediction accuracy. 
In comparison, although the RF model can integrate all 95 metrics for comprehensive prediction, its 
prediction accuracy is not as good as the SLR model (ΔR² ≈ 0.04). 
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Figure 4. Comparison of tree height prediction models using different segmentation methods and 

modeling approaches. (a) SLR model with auto-generated segmentation (b) SLR model with 
manually corrected segmentation (c) RF model with auto-generated segmentation (d) RF model 

with manually corrected segmentation 
 

Comparing the two sets of models generated from automatic segmentation and manually adjusted 
segmentation, it can be observed that the models generated from automatic individual tree 
segmentation significantly outperform those from manually adjusted individual tree segmentation in 
tree height prediction (ΔR² ≈ 0.03). This indicates that when predicting tree height, the results 
generated from automatic individual tree segmentation are sufficiently accurate, and there is no need 
for time-consuming manual corrections. 
 

DBH Prediction Model 

For DBH prediction, MLR models were used as parametric models for prediction and compared with 

(a) (b) 

(c) (d) 
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machine learning models. Figure 5 shows the relationship between predicted DBH and measured DBH 
for 4 models. The DBH prediction results indicate that there is a significant difference between models 
generated from automatic segmentation and manually adjusted individual tree segmentation (ΔR² ≈ 
0.15). The main reason is the classification errors of individual tree point clouds caused by automatic 
individual tree segmentation, while manual correction of segmentation fixed most of these errors, 
thus significantly improving the model's fit. 

 

 
Figure 5. Comparison of DBH prediction models using different segmentation methods and 
modeling approaches. (a) SLR model with auto-generated segmentation (b) SLR model with 

manually corrected segmentation (c) RF model with auto-generated segmentation (d) RF model 
with manually corrected segmentation 

 
Although predicting DBH using the predefined comprehensive set of indicators can explain the main 
variations affecting DBH (R² > 0.5), there is still room for improvement in the model's prediction 
accuracy. Similar to the comparison results of tree height prediction models, MLR models slightly 
outperform RF models in DBH prediction accuracy, but the difference is not significant. For example, 
in the two models generated after manually adjusting individual tree segmentation, the performance 

(a) (b) 

(c) (d) 
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of MLR and RF is almost equivalent (ΔR² ≈ 0.01). 
 

Volume Prediction Model 

Consistent with the choice of DBH prediction models, MLR and RF models were used for volume 
prediction, with the results shown in Figure 6. Similar to the results of the DBH prediction models, 
there is a significant difference between models generated from automatic segmentation and 
manually adjusted individual tree segmentation (ΔR² ≈ 0.13). This consistency highlights the crucial 
role of high-quality data preprocessing (especially individual tree segmentation) when using LiDAR 
data for forest parameter estimation. 
 

 

 
Figure 6. Comparison of volume prediction models using different segmentation methods and 
modeling approaches. (a) SLR model with auto-generated segmentation (b) SLR model with 

manually corrected segmentation (c) RF model with auto-generated segmentation (d) RF model 
with manually corrected segmentation 

 
By comparing the two types of models with the same segmentation results, similar to the comparison 

(a) (b) 

(c) (d) 
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results of DBH prediction models, the prediction accuracy of MLR models is higher than that of RF 
models, but the difference is not very significant (ΔR² ≈ 0.03). 

Discussion 

Tree height Prediction Model Results Discussion 

In this project, the SLR model generated based on automatic individual tree segmentation results 
performed best in tree height prediction (R² = 0.82). The tree height prediction equation generated 
by the model is: 

𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 0.9114 × 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 + 1.9304 
Where Hpredicted is the predicted tree height, and zmax is the maximum height in the individual tree point 
cloud information. 
The comparison results of four tree height prediction models for individual trees indicate that the SLR 
model's prediction accuracy is higher than that of the RF model. This phenomenon may be attributed 
to the RF model allocating weights among multiple metrics, thus diluting the weight proportion 
assigned to height-directly related metrics. The SLR model performs better in this case mainly because 
it focuses on a single metric highly related to tree height, capable of capturing tree height changes 
more directly. This result demonstrates that in specific situations, simple models may outperform 
complex ones, especially when there is a strong linear relationship between the predictor variable and 
the target variable. 
 
Furthermore, the results of individual tree height prediction models show that models generated from 
automatic individual tree segmentation significantly outperform those from manually adjusted 
individual tree segmentation in tree height prediction. This result highlights the advantage of LiDAR 
data in capturing treetop structures, accurately reflecting tree height information even when 
automatic segmentation might not be precise enough. This may be because tree height is mainly 
determined by the highest points in the point cloud, which are usually well preserved in automatic 
segmentation. In contrast, manually corrected individual tree segmentation results may lead to these 
points being incorrectly assigned to other trees, thereby reducing the predictive ability of models 
generated from manually adjusted individual tree segmentation for tree height. 
 
However, the absolute accuracy of height prediction models should be viewed with caution. This study 
uses manually measured tree heights as standard values and predicted values obtained from LiDAR 
data analysis as comparison values. This approach has potential issues: manual measurements using 
vertex hypsometers and performed by multiple people may lead to inconsistent measurement 
standards and visual errors, among other human errors. In comparison, LiDAR data undergoes 
multiple rounds of noise removal and compares different algorithms to obtain more accurate results. 
Therefore, using manually measured tree heights as a validation standard may not fully indicate the 
absolute accuracy of model prediction results, but rather demonstrates the potential of LiDAR data 
to replace traditional manual measurements in tree height prediction. 
 

DBH Prediction Model Results Discussion 
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Analysis of DBH prediction results based on four different models shows that the prediction accuracy 
for DBH is generally low, with the highest coefficient of determination (R²) reaching only 0.589. The 
prediction model results are shown in Table 2. Among them, zq90 (90th percentile of height) reflects 
the upper crown structure; zpcum9 (9th value of cumulative height percentage) provides information 
about vertical structure distribution; L3 (3rd value of L-moments statistics) describes the skewness of 
height distribution; lad_cv (coefficient of variation of Leaf Area Density) characterizes the spatial 
variability of leaf area density; pz_10.20 (percentage of points between 10-20 meters in height) reflects 
the point cloud density at specific height layers; p_intermidiate (proportion of intermediate returns) 
indicates the degree of laser penetration through the crown; vn (number of voxels after voxelization) 
represents the spatial distribution density of the point cloud; vzsd (standard deviation of height after 
voxelization) describes the degree of height variation; and coords.x1 (position information of the point 
cloud on the X-axis) provides spatial location data. 
 
Table 2. Multiple Linear Regression Model Results for DBH Prediction Using LiDAR-Derived Metrics 

  Estimate Std. Error t value P VIF 
Intercept -176543.021 61355.74 -2.877 0.004  

zq90 7.558 1.359 5.561 <0.001 1.773 
zpcum9 1.18 0.446 2.646 0.009 1.255 

L3 -31.204 11.636 -2.682 0.008 1.481 
lad_cv -31.022 10.301 -3.011 0.003 2.293 

pz_10.20 -1.428 0.265 -5.392 <0.001 2.262 
p_intermidiate -8.503 1.336 -6.367 <0.001 1.929 

vn 0.363 0.03 12.034 <0.001 1.469 
vzsd 130.812 65.913 1.985 0.049 1.993 

coords.x1 0.114 0.04 2.88 0.004 1.224 

Adjusted R-squared 0.6881 
MAE% 5.55% 
RMSE 21.27 mm 

R-squared 0.5888 
WD 2.1998 

 
From Table 2, the expression for predicting DBH can be obtained: 

𝐷𝐷𝐷𝐷𝐷𝐷 =  −176543.021 + 7.558 × 𝑧𝑧𝑧𝑧90 + 1.18 × 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧9 − 31.204 × 𝐿𝐿3 − 31.022 × 𝑙𝑙𝑙𝑙𝑑𝑑𝑐𝑐𝑐𝑐
− 1.428 × 𝑝𝑝𝑧𝑧10.20 − 8.503 × 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 0.363 × 𝑣𝑣𝑣𝑣 + 130.812 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
+ 0.114 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑥𝑥1 

DBH Prediction Model Diagnostic Results 

Table 2 also shows the weight and influence of each metric on the model and its VIF value. All metrics 
in this model have VIF values less than 5, indicating no multicollinearity. Through the DW test on the 
model, the model's DW is approximately 2.2, indicating a slight negative autocorrelation in the 
residuals, which does not seriously affect the overall performance of the model. Figure 7 further 
presents the diagnostic results of the multiple linear regression (MLR) model, validating the model's 
appropriateness and reliability by evaluating three key aspects: linearity, homoscedasticity, and 
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normality. These diagnostic plots indicate that the DBH prediction model largely satisfies the basic 
assumptions of multiple linear regression. There are slight deviations in linearity and homoscedasticity, 
but they are not severe enough to significantly affect the overall validity of the model. The slight 
deviation in linearity may suggest subtle non-linear relationships between some predictor variables 
and DBH, while the small fluctuations in homoscedasticity may reflect natural variability in forest 
structure across different DBH ranges. Considering the VIF values, Durbin-Watson test results, and 
the analysis of these diagnostic plots comprehensively, it can be concluded that the model results are 
relatively reliable and can truly reflect the relationship between LiDAR-derived indicators and DBH. 

 

 

 
Figure 7. Diagnostic Plots for the DBH Prediction Model using Multiple Linear Regression. From top 

to bottom are linearity, homogeneity of variance and normality of residuals. 
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From the perspective of individual tree segmentation methods, the MLR model based on manually 
adjusted individual tree segmentation results has the highest accuracy. This indicates that the linear 
model can capture most of the important variation information, and the even-aged, uniform density 
stand structure may lead to relatively consistent tree growth characteristics, thus reducing the 
occurrence of complex non-linear relationships. These environmental characteristics may limit the 
potential advantages of more complex algorithms such as RF models, which typically perform better 
in handling highly non-linear and complex interactive relationships. 
 
Compared to previous studies, the DBH prediction accuracy (R²) in this report is lower than the range 
of 0.68 to 0.89 reported in the literature (Liu et al., 2018; Cao et al., 2016; Yu et al., 2011; Dalla et al., 
2020). This result suggests that based on current UAV LiDAR technology and data processing methods, 
the accuracy of DBH estimation is not yet sufficient to fully replace traditional manual measurements. 
The main reason for this result is that UAV LiDAR primarily emits laser pulses from above, with most 
signals being obstructed by tree crowns, resulting in relatively sparse point cloud data that directly 
characterizes trunk features. Additionally, the predefined comprehensive set of indicators in the LidR 
package used in this study may not have adequately included the most critical features for DBH 
prediction, thus limiting the model's prediction accuracy for DBH. 
 

Volume Prediction Model Results Discussion 

Analysis of prediction results based on four different models shows that the performance of volume 
prediction models is significantly better than that of DBH prediction models. The highest coefficient 
of determination (R²) for volume prediction reached 0.72, indicating that the model explained 72% of 
volume variation, reaching a strong correlation level. This result contrasts sharply with the highest R² 
(0.589) of the DBH prediction model. Detailed results of the prediction model are shown in Table 3. 
Notably, the LiDAR metrics used to construct the multiple linear regression (MLR) model for volume 
prediction are almost identical to those used in the DBH prediction model. These indicators 
demonstrated significantly higher accuracy in predicting tree volume, suggesting that compared to 
describing individual tree DBH, these metrics exhibit stronger explanatory power and predictive ability 
in characterizing individual tree volume features. Among them, zq90 (90th percentile of height) 
reflects the upper crown structure; zpcum9 (9th value of cumulative height percentage) provides 
information about vertical structure distribution; L3 (3rd value of L-moments statistics) describes the 
skewness of height distribution; lad_cv (coefficient of variation of Leaf Area Density) characterizes the 
spatial variability of leaf area density; pz_10.20 (percentage of points between 10-20 meters in height) 
reflects the point cloud density at specific height layers; p_intermidiate (proportion of intermediate 
returns) indicates the degree of laser penetration through the crown; vn (number of voxels after 
voxelization) represents the spatial distribution density of the point cloud; and coords.x1 (position 
information of the point cloud on the X-axis) provides spatial location data. 
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Table 3. Multiple Linear Regression Model Results for Volume Prediction Using LiDAR-Derived Metrics 

  Estimate Std. Error t value P VIF 
Intercept -885.780793 208.784366 -4.242 <0.001  

zq90 0.046711 0.004543 10.282 <0.001 1.581 
zpcum9 0.004076 0.001545 2.638 0.009 1.201 

L3 -0.09142 0.039415 -2.319 0.021 1.356 
pz_10.20 -0.004446 0.000867 -5.125 <0.001 1.937 

p_intermidiate -0.020711 0.004159 -4.979 <0.001 1.493 
vn 0.00139 0.000106 13.062 <0.001 1.462 

coords.x1 0.000572 0.000135 4.24 <0.001 1.131 

Adjusted R-squared 0.7595 
MAE% 11.72% 

RMSE (m³) 0.0737 
R-squared 0.7191 

DW 2.2324 
 
From Table 3, the expression for predicting volume can be obtained: 

𝐷𝐷𝐷𝐷𝐷𝐷 =  −176543.021 + 7.558 × 𝑧𝑧𝑧𝑧90 + 1.18 × 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧9 − 31.204 × 𝐿𝐿3 − 31.022 × 𝑙𝑙𝑙𝑙𝑑𝑑𝑐𝑐𝑐𝑐
− 1.428 × 𝑝𝑝𝑧𝑧10.20 − 8.503 × 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 0.363 × 𝑣𝑣𝑣𝑣 + 130.812 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
+ 0.114 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑥𝑥1 

 

Volume Prediction Model Diagnostic Results 

Table 3 also shows the weight and influence of each metric on the model and its VIF value. All metrics 
in this model have VIF values less than 5, indicating no multicollinearity. Through the DW test on the 
model, the model's DW is approximately 2.2, indicating a slight negative autocorrelation in the 
residuals, which does not seriously affect the overall performance of the model. Figure 8 further 
presents the diagnostic results of the multiple linear regression (MLR) model, validating the model's 
appropriateness and reliability by evaluating three key aspects: linearity, homoscedasticity, and 
normality. These diagnostic plots indicate that the volume prediction model largely satisfies the basic 
assumptions of multiple linear regression. There are slight deviations in linearity and homoscedasticity, 
but they are not severe enough to significantly affect the overall validity of the model. The slight 
deviation in linearity may suggest subtle non-linear relationships between some predictor variables 
and volume, while the small fluctuations in homoscedasticity may reflect natural variability in forest 
structure across different volume ranges. Considering the VIF values, Durbin-Watson test results, and 
the analysis of these diagnostic plots comprehensively, it can be concluded that the model results are 
relatively reliable and can truly reflect the relationship between LiDAR-derived indicators and tree 
volume. 
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Figure 8. Diagnostic Plots for the Volume Prediction Model using Multiple Linear Regression. From 
top to bottom are linearity, homogeneity of variance and normality of residuals. 
 
Compared to previous studies, the R² of the volume prediction model falls within the range of 0.7 to 
0.93 reported in the literature (Liu et al., 2018; Yu et al., 2011; Hayashi et al., 2014), indicating that the 
metrics used to construct the model can well describe about 72% of volume variation. The predefined 
comprehensive set of indicators used in this study already includes features that are relatively critical 
for volume prediction, thus making the model's prediction accuracy for volume reliable. 
 
Compared to the diagnostic results of the DBH prediction model, the volume prediction model 
performs better in meeting regression assumptions. The volume model demonstrates higher 
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prediction stability and resistance to outliers, while the DBH model shows stronger non-linear 
relationships and sensitivity to outliers. This difference may stem from a more direct relationship 
between tree volume and the three-dimensional structural features captured by LiDAR, while DBH, 
as a two-dimensional measurement, is difficult to capture directly in LiDAR data obtained from above. 
The random forest model's performance approaching that of multiple linear regression in volume 
prediction suggests that there may be some non-linear relationships between volume and LiDAR 
indicators, although these non-linear features may not be as significant as expected. 
 
When using the traditionally manually measured DBH and tree height, and the volume estimated 
through formulas for individual trees as standard values, the prediction model can achieve a strong 
correlation. Consistent with the issues implied by tree height measurements, the volume estimation 
formula based on DBH and tree height as input parameters may lead to significant manual errors in 
volume estimation. Therefore, using the predicted values obtained from LiDAR data analysis as a 
comparison can only prove the feasibility of replacing traditional volume estimation formulas with 
UAV LiDAR, but cannot prove whether higher prediction accuracy can be achieved through UAV 
LiDAR. 
 

Future Study 

Further research can focus on improving DBH prediction accuracy and optimizing automatic 
segmentation algorithms. Given the complex relationship between DBH and LiDAR-derived indicators, 
more refined modeling strategies should be considered, such as exploring advanced machine learning 
algorithms, designing specialized DBH-related LiDAR indicators, and studying the association 
between DBH and crown structure characteristics. Although automatic segmentation based on the 
MCW algorithm performs well in tree height prediction, DBH and volume prediction still require 
manual verification to improve accuracy. Improving automatic segmentation algorithms can start 
from aspects such as optimizing MCW parameters, applying deep learning techniques, and 
researching adaptive segmentation algorithms. These optimizations can not only avoid time-
consuming manual corrections but also improve the overall efficiency and accuracy of LiDAR data 
analysis. 
 

Conclusion 
This study constructed models for predicting tree height, diameter at breast height (DBH), and volume 
by analyzing UAV LiDAR point cloud data and extracting key metrics, while comparing automatic 
individual tree segmentation based on the MCW algorithm with manually corrected segmentation 
results. A total of 12 prediction models were constructed, with the best fit (R²) reaching 0.82 for tree 
height, 0.59 for DBH, and 0.72 for volume, with linear models consistently outperforming random 
forest models. The study found that automatic segmentation performed excellently in tree height 
prediction, but showed significant differences from manually corrected results in DBH and volume 
prediction. These results confirm that UAV LiDAR-based prediction models can replace traditional 
labor-intensive measurement methods in tree height and volume estimation, improving the efficiency 
of forest surveys. However, the relatively lower accuracy of DBH prediction indicates that challenges 
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remain in estimating this parameter. Therefore, future research should focus on improving DBH 
prediction accuracy and optimizing automatic segmentation algorithms to further enhance the overall 
prediction accuracy and practicality of the models. These improvements will provide stronger support 
and valuable data for areas such as precision forestry, sustainable forest management, and large-
scale forest monitoring. 
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Appendix 

Tree detection and segmentation result of grid search for each plot 

Plot 31 
0.06*x+0.5 

 
Plot 32 
0.04*x+0.7 

 
Plot 35 
0.07 * x + 0.4 
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Plot 36 
0.07 * x + 0.4 

 
Plot 41 
0.05 * x + 0.8 
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